首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary.  The aim of this work was to study the activity of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) in the regeneration of lipophilic antioxidants, alpha-tocopherol, and reduced-coenzyme Q analogs. First, we tested whether or not two isoforms of the NAD(P)H:(quinone acceptor) oxidoreductase 1 designated as “hydrophilic” and “hydrophobic” (H. J. Prochaska and P. Talalay, Journal of Biological Chemistry 261: 1372–1378, 1986) show differential enzyme activities towards hydrophilic or hydrophobic ubiquinone homologs. By chromatography on phenyl Sepharose, we purified the two isoforms from pig liver cytosol and measured their reduction of several ubiquinone homologs of different side chain length. We also studied by electron paramagnetic resonance the effect of NAD(P)H:(quinone acceptor) oxidoreductase 1 on steady-state levels of chromanoxyl radicals generated by linoleic acid and lipooxygenase and confirmed the enzyme's ability to protect alpha-tocopherol against oxidation induced with H2O2-Fe2+. Our results demonstrated that the different hydrophobicities of the isoforms do not reflect different reactivities towards ubiquinones of different side chain length. In addition, electron paramagnetic resonance studies showed that in systems containing the reductase plus NADH, levels of chromanoxyl radicals were dramatically reduced. Morever, in the presence of oxidants, alpha-tocopherol was preserved by NAD(P)H:(quinone acceptor) oxidoreductase 1, supporting our hypothesis that regeneration of alpha-tocopherol may be one of the physiologic functions of this enzyme. Received May 20, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   

2.
A K Jaiswal 《Biochemistry》1991,30(44):10647-10653
  相似文献   

3.
4.
We have previously shown that inhibition of NAD(P)H:quinone acceptor oxidoreductase 1 with dicoumarol decreases growth and viability of HL-60 cells in the absence of serum. Here we demonstrate that culturing HL-60 cells in serum-free medium in the presence of dicoumarol results in a significant potentiation of apoptosis. However, when cells were preincubated for 24 h without serum before they were treated with dicoumarol, the effect of the inhibitor on cell growth and death was much lower. We have investigated cellular changes induced in HL-60 cells by removal of serum that could account for protection against the effects of dicoumarol. Serum removal induced significant increases of NAD(P)H:quinone acceptor oxidoreductase 1, particularly at 32 h after serum withdrawal. Total amounts of ubiquinone in cells were unchanged but, its reduction state paralleled the observed increase in quinone reductase activity. Levels of the antiapoptotic protein Bcl-2 were also significantly increased after serum removal. Our results indicate that removal of serum evokes an antioxidant protective response that make HL-60 cells less sensitive to cell death induced by inhibition of NAD(P)H:quinone acceptor oxidoreductase 1 with dicoumarol.  相似文献   

5.
NAD(P)H:quinone oxidoreductase 1 (NQO1; DT-diaphorase; DTD) is a cytosolic two-electron reductase, and compounds of the quinone family such as mitomycin C are efficiently bioactivated by this enzyme. The observation that DT-diaphorase is highly expressed in many cancerous tissues compared to normal tissues has provided us with a potentially selective target that can be exploited in the design of novel anticancer agents. Because of the relative lack of information about the cell-specific expression of DT-diaphorase, the purpose of this study was to map the distribution of this enzyme in normal human tissues. Fifteen tissue samples from normal human kidney were analyzed for expression of DT-diaphorase by immunohistochemistry (two-step indirect method). We found a specific high expression of DT-diaphorase in glomerular visceral epithelial cells (podocytes). These results suggest that a high expression of DT-diaphorase in podocytes could play a major role in the pathogenesis of renal toxicity and mitomycin C-induced hemolytic uremic syndrome, in which injury to the glomerular filtration mechanism is the primary damage, leading to a cascade of deleterious events including microangiopathic hemolytic anemia and thrombocytopenia. This observation has potential therapeutic implications because the DT-diaphorase metabolic pathway is influenced by many agents, including drugs, diet, and environmental cell factors such as pH and oxygen tension.  相似文献   

6.
Summary The NAD(P)H:quinone oxidoreductase activity of tobacco leaves is catalyzed by a soluble flavoprotein [NAD(P)H-QR] and membrane-bound forms of the same enzyme. In particular, the activity associated with the plasma membrane cannot be released by hypoosmotic and salt washing of the vesicles, suggesting a specific binding. The products of the plasma-membrane-bound quinone reductase activity are fully reduced hydroquinones rather than semi-quinone radicals. This peculiar kinetic property is common with soluble NAD(P)H-QR, plasma-membrane-bound NAD(P)H:quinone reductase purified from onion roots, and animal DT-diaphorase. These and previous results demonstrate that soluble and plasma-membrane-bound NAD(P)H:quinone reductases are strictly related flavo-dehydrogenases which seem to replace DT-diaphorase in plant tissues. Following purification to homogeneity, the soluble NAD(P)H-QR from tobacco leaves was digested. Nine peptides were sequenced, accounting for about 50% of NAD(P)H-QR amino acid sequence. Although one peptide was found homologous to animal DT-diaphorase and another one to plant monodehydroascorbate reductase, native NAD(P)H-QR does not seem to be structurally similar to any known flavoprotein.Abbreviations MDAR monodehydroascorbate reductase - PM plasma membrane - NAD(P)H-QR NAD(P)H:quinone oxidoreductase - DPI diphenylene iodonium - DQ duroquinone - CoQ2 coenzyme Q2  相似文献   

7.
Neutrophil elastase (NE), a potent neutrophil inflammatory mediator, increases MUC5AC mucin gene expression through undefined pathways involving reactive oxygen species. To determine the source of NE-generated reactive oxygen species, we used pharmacologic inhibitors of oxidoreductases to test whether they blocked NE-regulated MUC5AC mRNA expression. We found that dicumarol, an inhibitor of the NADP(H):quinone oxidoreductase 1 (NQO1), inhibited MUC5AC mRNA expression in A549 lung adenocarcinoma cells and primary normal human bronchial epithelial cells. We further tested the role of NQO1 in mediating NE-induced MUC5AC expression by inhibiting NQO1 expression using short interfering RNA (siRNA). Transfection with siRNA specific for NQO1 suppressed NQO1 expression and significantly abrogated MUC5AC mRNA expression. NE treatment caused lipid peroxidation in A549 cells; this effect was inhibited by pretreatment with dicumarol, suggesting that NQO1 also regulates oxidant stress in A549 cells after NE exposure. NE exposure increased NQO1 protein and activity levels; NQO1 expression and activity were limited to the cytosol and did not translocate to the plasma membrane. Our results indicate that NQO1 has an important role as a key mediator of NE-regulated oxidant stress and MUC5AC mucin gene expression.  相似文献   

8.
Lapachol inhibition of DT-diaphorase (NAD(P)H:quinone dehydrogenase)   总被引:1,自引:0,他引:1  
Lapachol has been found to be a potent inhibitor of the enzyme DT-Diaphorase. Inhibition is competitive versus NADH, Ki = 0.15 microM. Lapachol was not a good substrate for cytochrome P450 reductase, thus inhibition of DT-Diaphorase should not promote its metabolism via radical generating pathways. DT-Diaphorase has been used to test a lapachol affinity chromatography column designed for purification of another coumarin anticoagulant and lapachol sensitive enzyme, vitamin K epoxide reductase.  相似文献   

9.
Summary

It has been reported that little redox cycling occurs during the reduction of 2-methyl-1,4-naphthoquinone by DT-diaphorase, suggesting that the reduction product, 2-methyl-1,4-naphthohydroquinone, does not readily undergo autoxidation. In the present study, however, it has been shown that DT-diaphorase, by virtue of its ability to re-reduce the naphthoquinone formed in the oxidation reaction, decreases the rate of autoxidation of 2-methyl-1,4- naphthohydroquinone. Therefore, the low rate of redox cycling observed does not reflect an intrinsic stability of the hydroquinone but inhibition of its autoxidation by the enzyme. Redox cycling of 2,3-dimethyl-, 2,3-dimethoxy- and 2-methoxy-1,4-naphthoquinone, and the autoxidation of their respective hydroquinones, were similarly inhibited by diaphorase. The concentration of the enzyme required for inhibition varied widely among the different compounds, and this was related to the autoxidation rate of the hydroquinone and the rate at which the corresponding quinone was reduced by diaphorase. The behaviour of 2-hydroxy-1,4-naphthoquinone was exceptional in that the rate of redox cycling increased with increasing levels of diaphorase and no inhibition of the autoxidation of the hydroquinone derived from this substance could be demonstrated, even at very high enzyme concentrations. The results of the present experiments indicate that the relative stability of naphthohydroquinones cannot be judged on the basis of studies involving reduction of the quinone by DT-diaphorase and suggest that current concepts on the role of this enzyme in the detoxification of quinones may need revision.  相似文献   

10.
Emphysema is currently a leading cause of mortality with no known effective therapy to attenuate progressive loss of lung function. Previous work supports that activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is protective to the lung through induction of hundreds of antioxidant genes. In models of lung injury, the expression of NAD(P)H:quinone oxidoreductase 1 (NQO1) is upregulated in a manner dependent on Nrf2 and human emphysema is associated with reduced levels of NQO1. However, the functional role of NQO1 in emphysema remains unknown. In this study, we demonstrate the protective role of NQO1 in the development of emphysema using mouse models. NQO1-deficient animals demonstrated premature age-related emphysema and were more susceptible to both elastase and inhaled lipopolysaccharide models of emphysema. The absence of NQO1 was associated with enhanced markers of oxidant stress. Treatment of NQO1-deficient animals with the antioxidant N-acetylcysteine reversed the NQO1-dependent emphysematous changes. In vitro studies utilizing either inhibition or induction of NQO1 demonstrated a potent antioxidant role of NQO1 in macrophages, suggesting a role for macrophage-derived oxidants in the pathogenesis of emphysema. These novel findings support a functional role for NQO1 in protecting the lung from development of emphysema.  相似文献   

11.
12.
NAD(P)H:quinone oxidoreductase 1 (NQO1; DT-diaphorase; DTD) is a two-electron reductase that efficiently bioactivates compounds of the quinone family, such as mitomycin C. The observation that DTD is overexpressed in many cancerous tissues compared to normal tissues has provided us with a potentially selective target that can be exploited in the design of novel anticancer agents. Because of the relative lack of information on the cell-specific expression of DTD, the purpose of this study was to perform a body mapping of its normal distribution. Tissue samples from various components of the human reproductive system were analyzed by immunohistochemistry. We found strong expression of this enzyme in testicular stromal cells (Leydig cells) and in the epithelium of epididymis, ductuli efferentes, and Fallopian tube. These results suggest that DTD-bioactivated quinones could be responsible for a selective toxicity on these components of the reproductive system and cause clinical problems due to testosterone deficiency and infertility. This observation needs to be investigated in preclinical evaluation of new anticancer quinones and in patients treated with these compounds. (J Histochem Cytochem 49:1187-1188, 2001)  相似文献   

13.
Despite the extensive interest in NADPH:quinone oxidoreductase (NQO1, DT-diaphorase), there is little immunohistochemical information regarding its distribution in either normal human tissues or in human tumors. Using immunohistochemistry (IHC), we have examined cell-specific expression of NQO1 in many normal tissues and tumors as a step toward defining the distribution of NQO1 in humans. NQO1 was detected by IHC in respiratory, breast duct, thyroid follicle, and colonic epithelium, as well as in the corneal and lens epithelium of the eye. NQO1 was also detected by IHC in vascular endothelium in all tissues examined. NQO1 could also readily be detected in the endothelial lining of the aorta but was not detected using immunoblot analysis in the myocardium. Adipocytes stained positive for NQO1, and the enzyme was also detected by both IHC and immunoblot analysis in parasympathetic ganglia in the small intestine and in the optic nerve and nerve fibers. NQO1 was not highly expressed in five different human liver samples using immunoblot analysis, whereas studies using IHC demonstrated only trace NQO1 staining in isolated bile duct epithelium. NQO1 expresion was also examined by IHC in a variety of solid tumors. Marked NQO1 staining was detected in solid tumors from thyroid, adrenal, breast, ovarian, colon, and cornea and in non-small cell lung cancers. The NQO1 content of many solid tumors supports the use of NQO1-directed anticancer agents for therapeutic purposes, but the distribution of NQO1 in normal tissues suggests that potential adverse effects of such agents need to be carefully monitored in preclinical studies.  相似文献   

14.
15.
Mucous cell metaplasia (MCM) and neutrophil-predominant airway inflammation are pathological features of chronic inflammatory airway diseases. A signature feature of MCM is increased expression of a major respiratory tract mucin, MUC5AC. Neutrophil elastase (NE) upregulates MUC5AC in primary airway epithelial cells by generating reactive oxygen species, and this response is due in part to upregulation of NADPH quinone oxidoreductase 1 (NQO1) activity. Delivery of NE directly to the airway triggers inflammation and MCM and increases synthesis and secretion of MUC5AC protein from airway epithelial cells. We hypothesized that NE-induced MCM is mediated in vivo by NQO1. Male wild-type and Nqo1-null mice (C57BL/6 background) were exposed to human NE (50 μg) or vehicle via oropharyngeal aspiration on days 1, 4, and 7. On days 8 and 11, lung tissues and bronchoalveolar lavage (BAL) samples were obtained and evaluated for MCM, inflammation, and oxidative stress. MCM, inflammation, and production of specific cytokines, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein-2, interleukin-4, and interleukin-5 were diminished in NE-treated Nqo1-null mice compared with NE-treated wild-type mice. However, in contrast to the role of NQO1 in vitro, we demonstrate that NE-treated Nqo1-null mice had greater levels of BAL and lung tissue lipid carbonyls and greater BAL iron on day 11, all consistent with increased oxidative stress. NQO1 is required for NE-induced inflammation and MCM. This model system demonstrates that NE-induced MCM directly correlates with inflammation, but not with oxidative stress.  相似文献   

16.
17.
The objective of this study was to examine the impact of chronic hyperoxic exposure (95% O2 for 48 h) on intact bovine pulmonary arterial endothelial cell redox metabolism of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ). DQ or durohydroquinone (DQH2) was added to normoxic or hyperoxia-exposed cells in air-saturated medium, and the medium DQ concentrations were measured over 30 min. DQ disappeared from the medium when DQ was added and appeared in the medium when DQH2 was added, such that after approximately 15 min, a steady-state DQ concentration was approached that was approximately 4.5 times lower for the hyperoxia-exposed than the normoxic cells. The rate of DQ-mediated reduction of the cell membrane-impermeant redox indicator, potassium ferricyanide [Fe(CN)6(3-)], was also approximately twofold faster for the hyperoxia-exposed cells. Inhibitor studies and mathematical modeling suggested that in both normoxic and hyperoxia-exposed cells, NAD(P)H:quinone oxidoreductase 1 (NQO1) was the dominant DQ reductase and mitochondrial electron transport complex III the dominant DQH2 oxidase involved and that the difference between the net effects of the cells on DQ redox status could be attributed primarily to a twofold increase in the maximum NQO1-mediated DQ reduction rate in the hyperoxia-exposed cells. Accordingly, NQO1 protein and total activity were higher in hyperoxia-exposed than normoxic cell cytosolic fractions. One outcome for hyperoxia-exposed cells was enhanced protection from cell-mediated DQ redox cycling. This study demonstrates that exposure to chronic hyperoxia increases the capacity of pulmonary arterial endothelial cells to reduce DQ to DQH2 via a hyperoxia-induced increase in NQO1 protein and total activity.  相似文献   

18.
Fourteen novel 4-aminoquinazoline derivatives 215 were designed and synthesized. The structure of the newly synthesized compounds was established on the basis of elemental analyses, IR, 1H-NMR, 13C-NMR, and mass spectral data. The compounds were evaluated for their potential cytoprotective activity in murine Hepa1c1c7 cells. All of the synthesized compounds showed concentration-dependent ability to induce the cytoprotective enzyme NAD(P)H: quinone oxidoreductase (NQO1) with potencies in the low- to sub-micromolar range. This approach offers an encouraging framework which may lead to the discovery of potent cytoprotective agents.  相似文献   

19.
The autooxidation of L-Dopa, a catecholamine used in the symptomatic treatment of Parkinson's disease, generally yields reactive oxygen species and neurotoxic quinones. NAD(P)H:quinone oxidoreductase (NQO) is a flavoenzyme that is implicated in the detoxication of quinones, including those formed during L-Dopa autooxidation. Through the action of this enzyme, deleterious redox-labile quinones are turned into less toxic and more stable hydroquinones that are amenable to further detoxication and/or cellular excretion. In the present study, using primary rat astrocytes and C6 astroglioma as a model to evaluate the neuroprotective response of astroglial cells upon exposure to L-Dopa, we demonstrate that this compound, or more correctly its quinone (auto)oxidation products, up-regulates astroglial NQO in a time- and concentration-dependent way as assessed at the level of mRNA expression, protein level, and enzymatic activity. Moreover, under similar conditions cellular glutathione content was enhanced. It is concluded that, similar to glutathione, the oxidative stress limiting NQO is likely to contribute to the capacity of astroglial cells to protect dopaminergic neurons against L-Dopa, and, hence, may be considered as a potential target for the development of neuroprotective strategies for Parkinson's disease.  相似文献   

20.
Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号