首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.

Background

This issue of “Biochimica et Biophysica Acta — General Subjects” is dedicated to organic bioelectronics, an interdisciplinary field that has been growing at a fast pace. Bioelectronics creates tremendous promise, excitement, and hype. The application of organic electronic materials in bioelectronics offers many opportunities and is fuelled by some unique features of these materials, such as the ability to transport ions.

Scope of review

This is a perspective on the history and current status of the field.

Major conclusions

Organic bioelectronics currently encompasses many different applications, including neural interfaces, tissue engineering, drug delivery, and biosensors. The interdisciplinary nature of the field necessitates collaborations across traditional scientific boundaries.

General significance

Organic bioelectronics is a young and exciting interdisciplinary field. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   

2.

Background

S-Nitrosoglutathione (GSNO) is the S-nitrosated derivative of glutathione and is thought to be a critical mediator of the down stream signaling effects of nitric oxide (NO). GSNO has also been implicated as a contributor to various disease states.

Scope of review

This review focuses on the chemical nature of GSNO, its biological activities, the evidence that it is an endogenous mediator of NO action, and implications for therapeutic use.

Major conclusions

GSNO clearly exerts its cellular actions through both NO- and S-nitrosation-dependent mechanisms; however, the chemical and biological aspects of this compound should be placed in the context of S-nitrosation as a whole.

General significance

GSNO is a central intermediate in formation and degradation of cellular S-nitrosothiols with potential therapeutic applications; thus, it remains an important molecule of study. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

3.

Background

In the recent past large progress has been made in the analysis of the epigenome, the entirety of epigenetic modifications, and its meaning for the implementation of the genetic code. Besides histone modifications and miRNA expression, DNA methylation is one of the key players in the field of epigenetics, involved in numerous regulatory processes.

Methods

In the present review we focus on methods for the analysis of DNA methylation patterns and present an overview about techniques and basic principles available for this purpose.

Results and general significance

We here discuss advantages and disadvantages of various methods and their feasibility for specific tasks of DNA methylation analysis.  相似文献   

4.

Background

G-quadruplexes are polymorphic non-canonical nucleic acid conformations involved both in physiological and pathological processes. Given the high degree of folding heterogeneity and comparable conformational stabilities, different G-quadruplex forms can occur simultaneously, hence rendering the use of basic instrumental methods for structure determination, like X-ray diffraction or NMR, hardly useful. Footprinting techniques represent valuable and relatively rapid alternative to characterize DNA folding. The natural diterpenoid clerocidin is an alkylating agent that specifically reacts at single-stranded DNA regions, with different mechanisms depending on the exposed nucleotide.

Methods

Clerocidin was used to footprint G-quadruplex structures formed by telomeric and oncogene promoter sequences (c-myc, bcl-2, c-kit2), and by the thrombin binding aptamer.

Results

The easy modulability of CL reactivity towards DNA bases permitted to discriminate fully and partially protected sites, highlights stretched portions of the G-quadruplex conformation, and discriminate among topologies adopted by one sequence in different environmental conditions. Importantly, CL displayed the unique property to allow detection of G-quadruplex folding within a duplex context.

Conclusions

CL is a finely performing new tool to unveil G-quadruplex arrangements in DNA sequences under genomically relevant conditions.

General significance

Nucleic acid G-quadruplex structures are an emerging research field because of the recent indication of their involvement in a series of key biological functions, in particular in regulation of proliferation-associated gene expression. The use of clerocidin as footprinting agent to identify G-quadruplex structures under genomically relevant conditions may allow detection of new G-quadruplex-based regulatory regions.  相似文献   

5.

Background

Protein S-nitrosation is an important post-translational modification altering protein function. Interaction of nitric oxide with thiols is an active area of research, and is one of the mechanisms by which NO exerts its biological effects. Biotin switch assay is the method, which has been developed to identify S-nitrosated proteins. The major concern with biotin switch assay includes reducing disulfide which may lead to false positives. We report a modification of the biotin switch assay where sinapinic acid is utilized instead of ascorbate to eliminate potential artifacts in the detection of S-nitrosated proteins.

Methods

The denitrosation ability of sinapinic acid was assessed by monitoring either the NO or NO2- released by chemiluminescent NO detection or by the griess assay, respectively. DTNB assay was used to compare disulfide reduction by ascorbate and sinapinic acid. Sinapinic acid and ascorbate were compared in the biotin switch detection of S-nitrosoproteins in RAW 264.7 cells ± S-nitrosocysteine (CysNO) exposure.

Results

We show that sinapinic acid has the ability to denitrosate S-nitrosothiols at pH 7.0 and denitrate plus denitrosate at pHs 8 and 8.5. Unlike ascorbate, sinapinic acid degrades S-nitrosothiols, but it does not reduce disulfide bridges.

Conclusions

Sinapinic acid denitrosate RSNO and does not reduce disulfides. Thus can readily replace ascorbate in detection of S-nitrosated proteins in biotin switch assay.

General significance

The work described is important in view of protein S-nitrosation. In this study we provide an important modification that eliminates artifacts in widely used technique for detecting the S-nitrosoproteome, the biotin switch assay.  相似文献   

6.

Background

Today, cells are commonly analyzed in ensembles, i.e. thousands of cells per sample, yielding results on the average response of the cells. However, cellular heterogeneity implies the importance of studying how individual cells respond, one by one, in order to learn more about drug targeting and cellular behavior.

Scope of review

This review discusses general aspects on miniaturization of biological assays and in particular summarizes single-cell assays in microwell formats. A range of microwell-based chips are discussed with regard to their well characteristics, cell handling, choice of material etc. along with available detection systems for single-cell studies. History and trends in microsystem technology, various commonly used materials for device fabrication, and conventional methods for single-cell analysis are also discussed, before a closing section with a detailed example from our research in the field.

Major conclusions

A range of miniaturized and microwell devices have shown useful for studying individual cells.

General significance

In vitro assays offering low volume sampling and rapid analysis in a high-throughput manner are of great interest in a wide range of single-cell applications. Size compatibility between a cell and micron-sized tools has encouraged the field of micro- and nanotechnologies to move into areas such as life sciences and molecular biology. To test as many compounds as possible against a given amount of patient sample requires miniaturized tools where low volume sampling is sufficient for accurate results and on which a high number of experiments per cm2 can be performed.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

7.
8.

Background

Glutathione (GSH) is synthesized in the cytoplasm but there is a requirement for glutathione not only in the cytoplasm, but in the other organelles and the extracellular milieu. GSH is also imported into the cytoplasm. The transports of glutathione across these different membranes in different systems have been biochemically demonstrated. However the molecular identity of the transporters has been established only in a few cases.

Scope of review

An attempt has been made to present the current state of knowledge of glutathione transporters from different organisms as well as different organelles. These include the most well characterized transporters, the yeast high-affinity, high-specificity glutathione transporters involved in import into the cytoplasm, and the mammalian MRP proteins involved in low affinity glutathione efflux from the cytoplasm. Other glutathione transporters that have been described either with direct or indirect evidences are also discussed.

Major conclusions

The molecular identity of a few glutathione transporters has been unambiguously established but there is a need to identify the transporters of other systems and organelles. There is a lack of direct evidence establishing transport by suggested transporters in many cases. Studies with the high affinity transporters have led to important structure-function insights.

General significance

An understanding of glutathione transporters is critical to our understanding of redox homeostasis in living cells. By presenting our current state of understanding and the gaps in our knowledge the review hopes to stimulate research in these fields. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

9.

Background

The discovery of markers to identify the intestinal stem cell population and the generation of powerful transgenic mouse models to study stem cell physiology have led to seminal discoveries in stem cell biology.

Scope of review

In this review we give an overview of the current knowledge in the field of intestinal stem cells (ISCs) highlighting the most recent progress on markers defining the ISC population and pathways governing intestinal stem cell maintenance and differentiation. Furthermore we review their interaction with other stem cell related pathways. Finally we give an overview of alteration of these pathways in human inflammatory gastrointestinal diseases.

Major conclusions

We highlight the complex network of interactions occurring among different pathways and put in perspective the many layers of regulation that occur in maintaining the intestinal homeostasis.

General significance

Understanding the involvement of ISCs in inflammatory diseases can potentially lead to new therapeutic approaches to treat inflammatory GI pathologies such as IBD and celiac disease and could reveal the molecular mechanisms leading to the pathogenesis of dysplasia and cancer in inflammatory chronic conditions. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

10.

Background

Insight into protein–protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed.

Scope of review

We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5.

Major conclusions

The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level.

General significance

What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.  相似文献   

11.

Background

The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics.

Methods

We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy.

Results

The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore.

Conclusion

RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments.

General significance

RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging.  相似文献   

12.
13.

Background

Reactive oxygen species-mediated cysteine sulfenic acid modification has emerged as an important regulatory mechanism in cell signaling. The stability of sulfenic acid in proteins is dictated by the local microenvironment and ability of antioxidants to reduce this modification. Several techniques for detecting this cysteine modification have been developed, including direct and in situ methods.

Scope of review

This review presents a historical discussion of sulfenic acid chemistry and highlights key examples of this modification in proteins. A comprehensive survey of available detection techniques with advantages and limitations is discussed. Finally, issues pertaining to rates of sulfenic acid formation, reduction, and chemical trapping methods are also covered.

Major conclusions

Early chemical models of sulfenic acid yielded important insights into the unique reactivity of this species. Subsequent pioneering studies led to the characterization of sulfenic acid formation in proteins. In parallel, the discovery of oxidant-mediated cell signaling pathways and pathological oxidative stress has led to significant interest in methods to detect these modifications. Advanced methods allow for direct chemical trapping of protein sulfenic acids directly in cells and tissues. At the same time, many sulfenic acids are short-lived and the reactivity of current probes must be improved to sample these species, while at the same time, preserving their chemical selectivity. Inhibitors with binding scaffolds can be rationally designed to target sulfenic acid modifications in specific proteins.

General significance

Ever increasing roles for protein sulfenic acids have been uncovered in physiology and pathology. A more complete understanding of sulfenic acid-mediated regulatory mechanisms will continue to require rigorous and new chemical insights. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

14.

Background

Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.

Scope of review

This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.

Major conclusions

The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.

General significance

Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.  相似文献   

15.

Background

Bladder cancer has the peculiarity of shedding neoplastic cells and their components in urine representing a valuable opportunity to detect diagnostic markers. Using a semi-quantitative method we previously demonstrated that the levels of Tyr-phosphorylated proteins (TPPs) are highly increased in bladder cancer tissues and that soluble TPPs can also be detected in patient's urine samples. Although the preliminary evaluation showed very promising specificity and sensitivity, insufficient accuracy and very low throughput of the method halted the diagnostic evaluation of the new marker. To overcome this problem we developed a quantitative methodology with high sensitivity and accuracy to measure TPPs in urine.

Methods

The Immobilized Metal Affinity Chromatography (IMAC) was miniaturized in a 96 well format. Luminescence, visible and infrared fluorescence antibody-based detection methods were comparatively evaluated.

Results

Due to their low abundance we evidenced that both phosphoprotein enrichment step and very sensitive detection methods are required to detect TPPs in urine samples. To pursue high throughput, reproducibility and cost containment, which are required for bladder cancer screening programs, we coupled the pre-analytical IMAC procedure with high sensitive detection phases (infrared fluorescence or chemiluminescence) in an automated platform.

Conclusions

A high throughput method for measuring with high sensitivity TPP levels in urine samples is now available for large clinical trial for the establishment of the diagnostic and predictive power of TPPs as bladder cancer marker.

General significance

The new assay represents the first quantitative and high throughput method for the measurement of TPPs in urine.  相似文献   

16.

Background

Thyroid hormone receptors TRα1, TRβ1 and TRβ2 are broadly expressed and exert a pleiotropic influence on many developmental and homeostatic processes. Extensive genetic studies in mice precisely defined their respective function.

Scope of review

The purpose of the review is to discuss two puzzling issues:
The isoform specificity problem: the different functions of TRα1, TRβ1 and TRβ2 might reflect either their different distribution in tissues or differences in the receptor intrinsic properties.
The cell-specificity problem: one would expect that different cell types share a common repertoire of TR target genes, but current knowledge does not support this assumption. How TR function is affected by the cellular context is an unsolved question.

Major conclusions

Mouse genetics support a balanced contribution of expression pattern and receptor intrinsic properties in defining the receptor respective functions. The molecular mechanisms sustaining cell specific response remain hypothetical and based on studies performed with other nuclear receptors.

General significance

The isoform-specificity and cell-specificity questions have many implications for clinical research, drug development, and endocrine disruptor studies. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

17.

Background

Mitochondria are multifunctional organelles that not only serve as cellular energy stores but are also actively involved in several cellular stress responses, including apoptosis. In addition, mitochondria themselves are also continuously challenged by stresses such as reactive oxygen species (ROS), an inevitable by-product of oxidative phosphorylation. To exert various functions against these stresses, mitochondria must be equipped with appropriate stress responses that monitor and maintain their quality.

Scope of review

Interestingly, increasing evidence indicates that mitochondrial proteolysis has important roles in mitochondrial and cellular stress responses. In this review, we summarize current advances in mitochondrial proteolysis-mediated stress responses.

Major conclusions

Mitochondrial proteases do not only function as surveillance systems of protein quality control by degrading unfolded proteins but also regulate mitochondrial stress responses by processing specific mitochondrial proteins.

General significance

Studies on the regulation of mitochondrial proteolysis-mediated stress responses will provide the novel mechanistic insights into the stress response research fields.  相似文献   

18.

Background

The pH of a biological system is a crucial determinant of the structures and reactivity of its components and cellular homeostasis of H+ is critical for cell viability. Control and monitoring of cellular acidity are highly desirable for the purpose of studying biochemical processes in vivo.

Methods

The effect of photolysis of a caged strong acid, the ester 1-(2-nitrophenyl)-ethylhexadecyl sulfonate (HDNS) is used to cause a controlled drop in pH in single cells. An isolated cell is selected under the IR microscope, irradiated with near-UV light and monitored by FTIR.

Results

We demonstrate the use of FTIR spectromicroscopy to monitor light-induced acidification of the cellular medium by measuring the increased concentration of CO2 and corresponding decrease of HCO3 in the cell and in the surrounding medium.

Conclusions

We have demonstrated a method to control and accurately monitor the changes in pH of a cellular system by coupling a caged proton-releasing agent with FTIR spectromicroscopy detection. The overall implementation of photolysis and spectroscopic detection in a microscope optical configuration ensures single cell selectivity in both acidification and monitoring. We show the viability of monitoring of pH changes by FTIR spectromicroscopy with sensitivity comparable to that of glass electrodes, better than the existing methods for determining cell pH.

General significance

Reporting the effect of small variations of cellular acidity provides a major improvement in the understanding of the interplay between molecular properties as assessed in vitro and cell physiology.  相似文献   

19.

Background

Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues.

Scope of review

This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics.

Major conclusions

There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile–protein adducts.

General significance

In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

20.

Background

Owing to recent discoveries of many hydrogen sulfide-mediated physiological processes, sulfide biology is in the focus of scientific research. However, the promiscuous chemical properties of sulfide pose complications for biological studies, which led to accumulation of controversial observations in the literature.

Scope of review

We intend to provide an overview of fundamental thermodynamic and kinetic features of sulfide redox- and coordination-chemical reactions and protonation equilibria in relation to its biological functions. In light of these chemical properties we review the strengths and limitations of the most commonly used sulfide detection methods and recently developed fluorescent probes. We also give a personal perspective on blood and tissue sulfide measurements based on proposed biomolecule–sulfide interactions and point out important chemical aspects of handling sulfide reagent solutions.

Major conclusions

The diverse chemistries of sulfide detection methods resulted in orders of magnitude differences in measured physiological sulfide levels. Investigations that were aimed to dissect the underlying molecular reasons responsible for these controversies made the important recognition that there are large sulfide reserves in biological systems. These sulfide pools are tightly regulated in a dynamic manner and they are likely to play a major role in regulation of endogenous-sulfide-mediated biological functions and avoiding toxic side effects.

General significance

Working with sulfide is challenging, because it requires considerable amounts of chemical knowledge to adequately handle reagent sulfide solutions and interpret biological observations. Therefore, we propose that a rigorous chemical approach could aid the reconciliation of the increasing number of controversies in sulfide biology. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号