共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascenzi P Ciaccio C Coletta M 《Biochemical and biophysical research communications》2007,363(4):931-936
Peroxynitrite-mediated oxidation of ferrous nitrosylated myoglobin (Mb(II)-NO) involves the transient ferric nitrosylated species (Mb(III)-NO), followed by NO dissociation and formation of ferric myoglobin (Mb(III)). In contrast, peroxynitrite-mediated oxidation of ferrous oxygenated myoglobin (Mb(II)-O2) involves the transient ferrous deoxygenated and ferryl derivatives (Mb(II) and Mb(IV)O, respectively), followed by Mb(III) formation. Here, kinetics of peroxynitrite-mediated oxidation of ferrous carbonylated horse heart myoglobin (Mb(II)-CO) is reported. Values of the first-order rate constant for peroxynitrite-mediated oxidation of Mb(II)-CO (i.e., for Mb(III) formation) and of the first-order rate constant for CO dissociation from Mb(II)-CO (i.e., for Mb(II) formation) are h = (1.2 ± 0.2) × 10−2 s−1 and koff(CO) = (1.4 ± 0.2) × 10−2 s−1, respectively, at pH 7.2 and 20.0 °C. The coincidence of values of h and koff(CO) indicates that CO dissociation represents the rate limiting step of peroxynitrite-mediated oxidation of Mb(II)-CO. 相似文献
2.
Vilasi S Dosi R Iannuzzi C Malmo C Parente A Irace G Sirangelo I 《FEBS letters》2006,580(6):1681-1684
In protein deposition disorders, a normally soluble protein is deposited as insoluble aggregates, referred to as amyloid. The intrinsic effects of specific mutations on the rates of protein aggregation and amyloid formation of unfolded polypeptide chains can be correlated with changes in hydrophobicity, propensity to convert alpha-helical to beta sheet conformation and charge. In this paper, we report the aggregation rates of buffalo, horse and bovine apomyoglobins. The experimental values were compared with the theoretical ones evaluated considering the amino acid differences among the sequences. Our results show that the mutations which play critical roles in the rate-determining step of apomyoglobin aggregation are those located within the N-terminal region of the molecule. 相似文献
3.
Eric Marr Mark Tardie Maynard Carty Tracy Brown Phillips Ing‐Kae Wang Walt Soeller Xiayang Qiu George Karam 《Acta Crystallographica. Section F, Structural Biology Communications》2006,62(11):1058-1060
Human adipocyte lipid‐binding protein (aP2) belongs to a family of intracellular lipid‐binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity. 相似文献
4.
A conformational study in solution of the fatty acid binding protein from chicken liver is presented. The nearly complete sequence‐specific 1H resonance assignment was achieved from homonuclear two‐dimensional nmr experiments using a sample of native protein. The principal elements of secondary structure were identified: 10 antiparallel β‐strands and one helical segment followed by a turn comprising 5 residues. These elements correspond closely with those of the crystal structure of the related protein, and two new secondary structural features obtained from the nmr data are the β‐sheet conformation between the first and the last β‐strand in the protein sequence, as well as a helical loop at the N‐terminus of the polypeptide chain. © 1999 John Wiley & Sons, Inc. Biopoly 50: 1–11, 1999 相似文献
5.
It is relevant to cell physiology that nitric oxide (NO) reacts with both cytochrome oxidase (CcOX) and oxygenated myoglobin (MbO(2)). In this respect, it has been proposed [Pearce, L.L., et al. (2002) J. Biol. Chem. 277, 13556-13562] that (i) CcOX in turnover out-competes MbO(2) for NO, and (ii) NO bound to reduced CcOX is "metabolized" in the active site to nitrite by reacting with O(2). In contrast, rapid kinetics experiments reported in this study show that (i) upon mixing NO with MbO(2) and CcOX in turnover, MbO(2) out-competes the oxidase for NO and (ii) after mixing nitrosylated CcOX with O(2) in the presence of MbO(2), NO (and not nitrite) dissociates from the enzyme causing myoglobin oxidation. 相似文献
6.
Eduardo De Gerónimo Robert M. Hagan David C. Wilton Betina Córsico 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(9):1082-1089
Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. 相似文献
7.
Mihajlovic M Lazaridis T 《Protein science : a publication of the Protein Society》2007,16(9):2042-2055
Intestinal fatty acid binding protein (IFABP) interacts with biological membranes and delivers fatty acid (FA) into them via a collisional mechanism. However, the membrane-bound structure of the protein and the pathway of FA transfer are not precisely known. We used molecular dynamics (MD) simulations with an implicit membrane model to determine the optimal orientation of apo- and holo-IFABP (bound with palmitate) on an anionic membrane. In this orientation, the helical portal region, delimited by the alphaII helix and the betaC-betaD and betaE-betaF turns, is oriented toward the membrane whereas the putative beta-strand portal, delimited by the betaB-betaC, betaF-betaG, betaH-betaI turns and the N terminus, is exposed to solvent. Starting from the MD structure of holo-IFABP in the optimal orientation relative to the membrane, we examined the release of palmitate via both pathways. Although the domains can widen enough to allow the passage of palmitate, fatty acid release through the helical portal region incurs smaller conformational changes and a lower energetic cost. 相似文献
8.
Eduardo de Gerónimo Luciana Rodriguez Sawicki Natalia Bottasso Arias Gisela Raquel Franchini Fernando Zamarreño Marcelo Daniel Costabel Betina Córsico Lisandro Jorge Falomir Lockhart 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(1):141-150
Intestinal fatty acid-binding protein (IFABP) is highly expressed in the intestinal epithelium and it belongs to the family of soluble lipid binding proteins. These proteins are thought to participate in most aspects of the biology of lipids, regulating its availability for specific metabolic pathways, targeting and vectorial trafficking of lipids to specific subcellular compartments. The present study is based on the ability of IFABP to interact with phospholipid membranes, and we characterized its immersion into the bilayer's hydrophobic central region occupied by the acyl-chains. We constructed a series of Trp-mutants of IFABP to selectively probe the interaction of different regions of the protein, particularly the elements forming the portal domain that is proposed to regulate the exit and entry of ligands to/from the binding cavity. We employed several fluorescent techniques based on selective quenching induced by soluble or membrane confined agents. The results indicate that the portal region of IFABP penetrates deeply into the phospholipid bilayer, especially when CL-containing vesicles are employed. The orientation of the protein and the degree of penetration were highly dependent on the lipid composition, the superficial net charge and the ionic strength of the medium. These results may be relevant to understand the mechanism of ligand transfer and the specificity responsible for the unique functions of each member of the FABP family. 相似文献
9.
Richieri Gary V. Ogata Ronald T. Kleinfeld Alan M. 《Molecular and cellular biochemistry》1999,192(1-2):77-85
The interactions of long chain fatty acids (FA) with wild type (WT) fatty acid binding proteins (FABP) and engineered FABP mutants have been monitored to determine the equilibrium binding constants as well as the rate constants for binding and dissociation. These measurements have been done using the fluorescent probes, ADIFAB and ADIFAB2, that allow the determination of the free fatty acid (FFA) concentration in the reaction of FA with proteins and membranes. The results of these studies indicate that for WT proteins from adipocyte, heart, intestine, and liver, Kd values are in the nM range and affinities decrease with increasing aqueous solubility of the FA. Binding affinities for heart and liver are generally greater than those for adipocyte and intestine. Moreover, measurements of the rate constants indicate that binding equilibrium at 37øC is achieved within seconds for all FA and FABPs. These results, together with the level of serum (unbound) FFA, suggests a buffering action of FABPs that helps to maintain the intracellular concentration of FFA so that the flux of FFA between serum and cells occurs down a concentration gradient. Measurements of the temperature dependence of binding reveal that the free energy is predominately enthalpic and that the enthalpy of the reaction results from FA-FABP interactions within the binding cavity. The nature of these interactions were investigated by determining the thermodynamics of binding to engineered point mutants of the intestinal FABP. These measurements showed that binding affinities did not report accurately the changes in protein-FA interactions because changes in the binding entropy and enthalpy tend to compensate. For example, an alanine substitution for arginine 106 yields a 30 fold increase in binding affinity, because the loss in enthalpy due to the elimination of the favorable interaction between the FA carboxylate and Arg106, is more than compensated for by an increase in entropy. Thus understanding the effects of amino acid replacements on FA-FABP interactions requires measurements of enthalpy and entropy, in addition to affinity. 相似文献
10.
May Poh Lai Francine S. Katz Cdric Bernard Judith Storch Ruth E. Stark 《Protein science : a publication of the Protein Society》2020,29(7):1606-1617
Two different members of the fatty acid‐binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver‐type and intestinal fatty acid‐binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat‐fed IFABP‐null mice remained lean, whereas LFABP‐null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two‐dimensional 1H–15N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP. 相似文献
11.
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. 相似文献
12.
Peter J. Voshol Patrick C.N. Rensen Ko Willems van Dijk Johannes A. Romijn Louis M. Havekes 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(6):479-485
The obesity epidemic is associated with an increased incidence of type 2 diabetes, cardiovascular morbidity and various types of cancer. A better insight into the molecular mechanisms that underlie adipogenesis and obesity may result in novel therapeutic handles to fight obesity and these associated diseases. Adipogenesis is determined by the balance between uptake of fatty acids (FA) from plasma into adipocytes, intracellular FA oxidation versus esterification of FA into triglycerides (TG), lipolysis of TG by intracellular lipases, and secretion of FA from adipocytes. Here, we review the mechanisms that are specifically involved in the entry of FA into adipose tissue. In plasma, these originating FA are either present as TG within apoB-containing lipoproteins (i.e. chylomicrons and VLDL) or as free FA bound to albumin. Kinetic studies, however, have revealed that TG are the major source of FA entering adipose tissue, both in the fed and fasted condition. In fact, studies with genetically engineered mice have revealed that the activity of lipoprotein lipase (LPL) is a major determinant for the development of obesity. As a general rule, high fat diet-induced adipogenesis is aggravated by stimulated LPL activity (e.g. by adipose tissue-specific overexpression of LPL or deficiency for apoCIII), and attenuated by inhibited LPL activity (e.g. by adipose-specific deficiency for LPL, overexpression of apoCI or angptl4, or by deficiency for apoE or the VLDL receptor). In addition, we describe that the trans-membrane transport of FA and cytoplasmic binding of FA in adipocytes can also dramatically affect adipogenesis. The relevance of these findings for human pathophysiology is discussed. 相似文献
13.
It was shown previously that the intestinal fatty acid binding protein (I-FABP) is not essential for the absorption of dietary
fat. One notable feature of I-FABP deficiency was the enhancement of body weight gain in male mice but not in female mice.
To explore a possible cause for this gender dimorphic effect, we examined the changes in expression of genes that encode liver
fatty acid binding protein (L-FABP) and ileal lipid binding protein in the small intestine resulting from I-FABP deficiency.
The results indicate that both L-FABP and ilbp levels are modestly increased in the small intestine of chow-fed mice lacking
I-FABP. There was no discernible alteration of overall morphology or histology in the small intestine but changes in liver
histology were evident in I-FABP deficient male mice. Glucose tolerance was also investigated in aged mice. I-FABP deficiency
had no effect on glucose tolerance in male mice but it appeared to be improved in female mice. Thus, male and female mice
clearly respond differently to the loss of I-FABP from the small intestine but the observed changes in the abundance of L-FABP
and ilbp protein do not readily account for this phenomenon. (Mol Cell Boichem xxx: 1–8, 2005) 相似文献
14.
The study of adipocyte differentiation and lipid accumulation in insects has been limited by the lack of a system suitable for analysis of molecular mechanisms. Here, we describe the establishment of a model system of lipid accumulation in BmN4 cells, which are derived from silkworm ovary. In BmN4 cells, dexamethasone treatment induced accumulation of lipid, suppressed cellular proliferation, and caused the cells to form aggregates. We isolated the Bombyx mori fatty acid binding protein 1 gene (BmFABP1), which is the silkworm homologue of mouse Fabp4 (aP2), a marker of adipocyte differentiation in mammals. BmFABP1 expression was increased by dexamethasone treatment. We also isolated the BmFABP1 promoter, and found that it was activated by a combination of drugs that included dexamethasone. The demonstration of dexamethasone-stimulated lipid accumulation and BmFABP1 expression in BmN4 cells provides a useful model of inducible adipogenesis. This system should be valuable for investigation of the molecular mechanisms of fat body formation, adipocyte differentiation, and lipid accumulation in the silkworm and other Lepidopteran insects. 相似文献
15.
Peterson ES Leonard EF Foulke JA Oliff MC Salisbury RD Kim DY 《Biophysical journal》2008,95(1):322-332
The unfolding and refolding reaction of myoglobin was examined in solution and within a porous silica sol-gel glass. The sol-gel pores constrain the protein to a volume that is the same size and shape as the folded native state accompanied by a few layers of water solvation. Denaturants such as low pH buffers can be diffused through the gel pores to the protein to initiate unfolding and refolding. Acid-induced unfolding was hindered by the steric constraints imposed by the gel pores such that more denaturing conditions were required within the gel than in solution to create the unfolded state. No new folding intermediates were observed. Refolding of myoglobin was not complete in millimolar pH 7 buffer alone. Addition of 25% glycerol to the pH 7 buffer resulted in nearly complete refolding, and the use of 1 M phosphate buffer resulted in complete refolding. The role of this cosolvent and salt in disrupting the ordered water surrounding the protein within the gel is discussed in light of the Hofmeister series and entropic trapping via a diminished hydrophobic effect within the gel. These results are consistent with the premises of folding models in which secondary and tertiary structures are considered to form within a compact conformation of the protein backbone. 相似文献
16.
Michael Gaster 《Biochemical and biophysical research communications》2009,382(4):766-770
To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean, obese and T2D subjects, chronic exposed for PA. Complete oxidation from endogenous PA was reduced in diabetic and obese compared to lean myotubes while exogenous PA oxidation was reduced in diabetic compared to lean myotubes. The complete/incomplete ratio was significantly reduced in diabetic myotubes both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between β-oxidation and citric acid cycle in obese diabetic myotubes. 相似文献
17.
Judith Storch 《Molecular and cellular biochemistry》1990,98(1-2):141-147
Summary Fatty acid-binding proteins (FABP) are distinct but related gene products which are found in many mammalian cell types. They are generally present in high abundance, and are found in those tissues where free fatty acid (ffa) flux is high. The function(s) of FABP is unknown. Also not known is whether all FABP function similarly in their respective cell types, or whether different FABP have unique functions. The purpose of these studies was to assess whether different members of the FABP family exhibit different structural and functional properties. Two fluorescent analogues of ffa were used to compare the liver (L-FABP) and heart (H-FABP) binding proteins. The propionic acid derivative of diphenylhexatriene (PADPH) was used to examine the physical properties of the ffa binding site on L- and H-FABP, as well as the relative distribution of ffa between FABP and membranes. An anthroyloxy-derivative of palmitic acid, 2AP, was used to monitor the transfer kinetics of ffa from liver or heart FABP to acceptor membranes, using a resonance energy transfer assay. The results demonstrate that the ffa binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Equilibration of PADPH between L-FABP and phosphatidylcholine (PC) bilayers resulted in a molar partition preference of > 20: 1, L-FABP : PC. Similar studies with H-FABP resulted in a PADPH partition preference of only 3:1, H-FABP : PC. Finally, the transfer of 2AP from H-FABP to acceptor membranes was found to be 50-fold faster than transfer from L-FABP. These studies demonstrate that important structural and functional differences exist between different members of the FABP family, and therefore imply that the roles of different FABP may be unique.Abbreviations FABP
Fatty Acid-Binding Protein
- L-FABP
Liver FABP
- H-FABP
Heart FABP
- SUV
Small Unilamellar Vesicle
- PADPH
3-[p-(6-Phenyl)-1,3,5-Hexatrienyl]-phenylpropionic acid
- 2AP
2-(9-Anthroyloxy)Palmitic acid
- Q
Quantum yield
- F
Fluorescence lifetime 相似文献
18.
Meei-Hua Lin Denis Khnykin 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(3):362-368
Fatty acids in the epidermis can be incorporated into complex lipids or exist in a free form, and they are crucial to proper functions of the epidermis and its appendages, such as sebaceous glands. Epidermal fatty acids can be synthesized de novo by keratinocytes or taken up from extracutaneous sources in a process that likely involves protein transporters. Several proteins that are expressed in the epidermis have been proposed to facilitate the uptake of long-chain fatty acids (LCFA) in mammalian cells, including fatty acid translocase/CD36, fatty acid binding protein, and fatty acid transport protein (FATP)/very long-chain acyl-CoA synthetase. In this review, we will discuss the mechanisms by which these candidate transporters facilitate the uptake of fatty acids. We will then discuss the clinical implications of defects in these transporters and relevant animal models, including the FATP4 animal models and ichthyosis prematurity syndrome, a congenital ichthyosis caused by FATP4 deficiency. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. 相似文献
19.
Dalgaard LT Thams P Gaarn LW Jensen J Lee YC Nielsen JH 《Biochemical and biophysical research communications》2011,(2):4825-350
Fatty acid-induced damage in pancreatic β-cells is assumed to play an important role in the development of type 2 diabetes. Lactogens (prolactin, placental lactogen and growth hormone) improve β-cell survival via STAT5 activation but the molecular targets are incompletely characterized. The aim of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP2, FATP1 and FATP4 were unchanged. RNAi against FAT/CD36 decreased fatty acid-induced apoptosis. Over-expression of constitutively active STAT5 was able to mimic hGH’s suppression of FAT/CD36 expression, whereas dominant negative STAT5 was unable to block the effect of hGH indicating that STAT5 did not bind directly to the FAT/CD36 promoter. The hGH-mediated suppression of FAT/CD36 mRNA was associated with a decrease in palmitate uptake and fatty acid-induced basal hyper-secretion of insulin resulting in improved glucose-stimulated insulin secretion. This study suggests that hGH can protect β-cells against fatty acid-induced damages. 相似文献
20.
James C. Sacchettini Leonard J. Banaszak Jeffrey I. Gordon 《Molecular and cellular biochemistry》1990,98(1-2):81-93
A prokaryotic expression vector containing the rec A promoter and a translational enhancer element from the gene 10 leader of bacteriophage T7 was used to direct efficient synthesis of rat intestinal fatty acid binding protein (I-FABP) in E. coli. Expression of I-FABP in E. coli has no apparent, deleterious effects on the organism. High levels of expression of I-FABP mRNA in supE+ strains of E. coli, such as JM101, is associated with suppression of termination at its UGA stop codon. This can be eliminated by using a sup-Estrain as MG1655 and by site-directed mutagenesis of the cDNA to create an in frame UAA stop codon. E. coli-derived rat I-FABP lacks its initiator Met residues. It has been crystallized with and without bound palmitate. High resolution x-ray crystallographic studies of the 131 residue apo- and holo-proteins have revealed the following. I-FABP contains 10 anti-parallel -strands organized into two orthogonally situated -sheets. The overall conformation of the protein resembles that of a clam — hence the term -clam. The bound ligand is located in the interior of the protein. Its carboxylate group forms part of a unique five member hydrogen bonding network consisting of two ordered solvent molecules as well as the side chains of Arg106 and Gln115. The hydrocarbon chain of the bound C16:0 fatty acid has a distinctive bent conformation with a slight left-handed helical twist. This conformation is maintained by interactions with the side chains of a number of hydrophobic and aromatic amino acids. Apo-I-FABP has a similar overall conformation to holo-I-FABP indicating that the -clam structure is stable even without bound ligand. The space occupied by bound ligand in the core of the holo-protein is occupied by additional ordered solvent molecules in the apo-protein. Differences in the side chain orientations pf several residues located over a potential opening to the cores of the apo- and holo-proteins suggest that solvent may play an important role in the binding mechanism. Comparison of the C coordinates of apo- and holo-I-FABP with those of other proteins indicates it is a member of a superfamily that currently includes (i) 10 mammalian intracellular lipid binding proteins, (ii) the photoactive yellow protein from the purple photoautotrophic bacterium Ectothiorhodospira halophila and (iii) a group of extracellular lipid binding proteins from a diverse number of phyla that have a common barrel consisting of 8 anti-parallel -strands stacked in two nearly orthogonal sheets. In summary, E. coli-derived I-FABP not only represents a useful model for assessing the atomic details of fatty acid-protein interactions and the mechanisms which regulate acquisition and release of this type of ligand, but also structure/function relationships in other superfamily members.Abbreviations I-FABP
Intestinal Fatty Acid Binding Protein
- r.m.s
root mean square 相似文献