首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pichia fermentans DiSAABA 726 is a biofilm-forming yeast that undergoes dimorphic transition. Under yeast-like morphology it controls brown rot caused by Monilia spp. on apple fruit, while under pseudohyphal form, it shows pathogenic behaviour itself on peach fruit. The present study investigates the nutritional factors that induce and separate yeast-like and pseudohyphal morphologies under laboratory conditions. We show that P. fermentans DiSAABA 726 produces mainly yeast-like cells on media containing millimolar concentrations of urea and diammonium phosphate, and forms pseudohyphae at micromolar concentrations of these two salts. With ammonium sulphate, yeast-like or pseudohyphal morphology depends on the N concentration and the pH of the culture media. Amino acids such as methionine, valine, and phenylalanine invariably induce pseudohyphal morphology irrespective of the N concentration and the pH of the culture media. Methionol, 1-butanol, isobutanol, and isopropanol induce pseudohyphal growth, while phenylethanol and isoamyl alcohol fail to induce the formation of filaments. Thus, the morphogenesis of P. fermentans DiSAABA 726 depends more on the nitrogen source than on the N concentration, and is regulated by the quorum-sensing molecules that are generally produced from amino-acid assimilation under nitrogen starvation.  相似文献   

2.

Background

Melatonin is well-established as a powerful reducing agent of oxidant generated in the cell medium. We aimed to investigate how readily melatonin is oxidized by peroxyl radicals ROO⋅ generated by the thermolysis of 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH) and the role of glutathione (GSH) during the reaction course.

Methods

Chromatographic, mass spectroscopy, and UV–visible spectrometric techniques were used to study the oxidation of melatonin by ROO⋅ or horseradish peroxidase (HRP)/H2O2. Our focus was the characterization of products and the study of features of the reaction.

Results

We found that N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and a monohydroxylated derivative of melatonin were the main products of the reaction between melatonin and ROO⋅. Higher pH or saturation of the medium with molecular oxygen increased the yield of AFMK but did not affect the reaction rate. Melatonin increased the depletion of intracellular GSH mediated by AAPH. Using the HRP/H2O2 as the oxidant system, the addition of melatonin promoted the oxidation of GSH to GSSG.

Conclusions

These results show, for the first time, that melatonin radical is able to oxidize GSH.

General significance

We propose that this new property of melatonin could explain or be related to the recently reported pro-oxidant activities of melatonin.  相似文献   

3.

Background

During actomyosin interactions, the transduction of energy from ATP hydrolysis to motility seems to occur with the modulation of hydration. Trimethylamine N-oxide (TMAO) perturbs the surface of proteins by altering hydrogen bonding in a manner opposite to that of urea. Hence, we focus on the effects of TMAO on the motility and ATPase activation of actomyosin complexes.

Methods

Actin and heavy meromyosin (HMM) were prepared from rabbit skeletal muscle. Structural changes in HMM were detected using fluorescence and circular dichroism spectroscopy. The sliding velocity of rhodamine-phalloidin-bound actin filaments on HMM was measured using an in vitro motility assay. ATPase activity was measured using a malachite green method.

Results

Although TMAO, unlike urea, stabilized the HMM structure, both the sliding velocity and ATPase activity of acto-HMM were considerably decreased with increasing TMAO concentrations from 0–1.0 M. Whereas urea-induced decreases in the structural stability of HMM were recovered by TMAO, TMAO further decreased the urea-induced decrease in ATPase activation. Urea and TMAO were found to have counteractive effects on motility at concentrations of 0.6 M and 0.2 M, respectively.

Conclusions

The excessive stabilization of the HMM structure by TMAO may suppress its activities; however, the counteractive effects of urea and TMAO on actomyosin motor activity is distinct from their effects on HMM stability.

General significance

The present results provide insight into not only the water-related properties of proteins, but also the physiological significance of TMAO and urea osmolytes in the muscular proteins of water-stressed animals.  相似文献   

4.

Background

The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases.

Methods

The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated.

Results

Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase.

Conclusions

The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases.

General significance

The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.  相似文献   

5.

Context

Molecular diagnosis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) has not been straightforward.

Objective

To conduct a comprehensive genetic analysis by Multiplex Ligation dependent Probe Amplification (MLPA) and evaluate its reliability for the molecular CAH-21OHD diagnosis.

Patients and methods

We studied 99 patients from 90 families with salt-wasting (SW; n = 32), simple-virilizing (SV; n = 29), and non-classical (NC; n = 29) CAH-21OHD. Molecular analysis was sequentially performed by detecting the most frequent point mutations by allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), large rearrangements by MLPA, and rare mutations by direct sequencing. Parental segregation was evaluated.

Results

ASO-PCR detected microconversions in 164 alleles (91.1%). MLPA identified CYP21A1P large conversions to CYP21A2 in 7 of the remaining 16 (43.7%), 30-kb deletions including the 3′-end of CYP21A1P, C4B, and the 5′-end of CYP21A2 in 3 of the 16 (18.7%), and a complete CYP21A2 deletion in one (6.3%). Five alleles (2.7%) required direct sequencing; three mutations located in the CYP21A2 gene and two derived from CYP21A1P were found. No parental segregation was observed in patients with the c.329_336del and/or the CL6 cluster mutations. These cases were not diagnosed by ASO-PCR, but MLPA detected deletions in the promoter region of the CYP21A2 gene, explaining the genotype/phenotype dissociation.

Conclusion

Using the proposed algorithm, all alleles were elucidated. False-positive results in MLPA occurred when mutations or polymorphisms were located close to the probe-binding regions. These difficulties were overcome by the association of MLPA with ASO-PCR and paternal segregation. Using these approaches, we can successfully use MLPA in a cost-effective laboratory routine for the molecular diagnosis of CAH-21OHD.  相似文献   

6.

Background

The Galanthus nivalis agglutinin (GNA)-related lectins have been reported to bear antiproliferative and apoptosis-inducing activities in cancer cells; however, the precise mechanisms by which GNA-related lectins induce cell death are still only rudimentarily understood.

Methods

In the present study, Polygonatum odoratum lectin (designated POL), a mannose-binding specific GNA-related lectin, possessed a remarkable antiproliferative activity toward murine fibrosarcoma L929 cells. And, this lectin induced L929 cell apoptosis in a caspase-dependent manner. In addition, POL treatment increased the levels of FasL and Fas-Associated protein with Death Domain (FADD) proteins and resulted in caspase-8 activation. Also, POL treatment caused mitochondrial transmembrane potential collapse and cytochrome c release, leading to activations of caspase-9 and caspase-3. Moreover, POL treatment enhanced tumor necrosis factor α (TNFα)-induced L929 cell apoptosis.

Results

Our data demonstrate for the first time that this lectin induces apoptosis through both death-receptor and mitochondrial pathways, as well as amplifies TNFα-induced L929 cell apoptosis.

General significance

These inspiring findings would provide new molecular basis for further understanding cell death mechanisms of the Galanthus nivalis agglutinin (GNA)-related lectins in future cancer investigations.  相似文献   

7.

Background

Thiol-mediated redox regulation of proteins plays a key role in many cellular processes.

Methods

To understand the redox status of cysteinyl thiol groups of the desired proteins, we developed a new maleimide reagent: a maleimide-conjugated single strand DNA, DNA-maleimide (DNA-Mal).

Results

DNA-Mal labelled proteins run as a distinct band on SDS-PAGE, with a discrete 9.32 kDa mobility shift per label regardless of the protein species or electrophoretic conditions.

Conclusions

DNA-Mal labels free thiols like standard maleimide reagents, but possesses practical advantages in titration of the number and relative content of free thiols in a protein.

General significance

The versatility of DNA molecule enhances the application of DNA-Mal in a broader range of cysteine containing proteins.  相似文献   

8.

Background

Septins, novel cytoskeletal proteins, form rings at the bases of emerging round buds in yeasts and at the bases of emerging elongated hyphal initials in filamentous fungi.

Methodology/Principal Findings

When introduced into the yeast Saccharomyces cerevisiae, the septin AspC from the filamentous fungus Aspergillus nidulans induced highly elongated atypical pseudohyphae and spore-producing structures similar to those of hyphal fungi. AspC induced atypical pseudohyphae when S. cerevisiae pseudohyphal or haploid invasive genes were deleted, but not when the CDC10 septin gene was deleted. AspC also induced atypical pseudohyphae when S. cerevisiae genes encoding Cdc12-interacting proteins Bem4, Cla4, Gic1 and Gic2 were deleted, but not when BNI1, a Cdc12-interacting formin gene, was deleted. AspC localized to bud and pseudohypha necks, while its S. cerevisiae ortholog, Cdc12, localized only to bud necks.

Conclusions/Significance

Our results suggest that AspC competes with Cdc12 for incorporation into the yeast septin scaffold and once there alters cell shape by altering interactions with the formin Bni1. That introduction of the A. nidulans septin AspC into S. cerevisiae induces a shift from formation of buds to formation of atypical pseudohyphae suggests that septins play an important role in the morphological plasticity of fungi.  相似文献   

9.

Aims

The (2′S,7′S)-O-(2-methylbutanoyl)-columbianetin (OMC) is a novel secondary metabolite extracted from Corydalis heterocarpa, which has long been used as a folk medicine for various inflammatory diseases in Korea. We examined the effect of OMC on allergic rhinitis (AR).

Main methods

We assessed the therapeutic effects and regulatory mechanisms of OMC on the phorbol 12-myristate 13-acetate plus A23187-stimulated mast cell line, HMC-1 cells and ovalbumin (OVA)-induced AR models.

Key findings

OMC significantly decreased the releases of histamine and tryptase from stimulated HMC-1 cells. The degranulation process, characterized by morphological extension of the filopodia on the surface and membrane ruffling, was strongly induced in the stimulated-HMC-1 cell, however OMC suppressed the morphological changes in stimulated-HMC-1 cells. OMC reduced the production and mRNA expression of inflammatory cytokines. These inhibitory actions by OMC were dependent on the regulation of mitogen-activated protein kinases, nuclear factor-κB, and caspapase-1 signaling pathways. In the AR animal model, the increased rub scores and AR biomarkers (histamine and IgE) in ovalbumin (OVA)-sensitized mice were significantly reduced by the administration of OMC. Furthermore, eosinophils and mast cell infiltrations in nasal mucosa tissue were also blocked through the regulation of macrophage-inflammatory protein and intercellular adhesion molecule-1 levels.

Significance

OMC showed the possibility to regulate AR in activated mast cells and OVA-induced AR models. Hence, we suggest that OMC is a powerful and feasible new agent to suppress AR.  相似文献   

10.

Background

Hydroxy-1-aryl-isochromans (HAIC) are newly emerging natural polyphenolic antioxidants, enriched in extravirgin olive oil, whose antioxidative potency was only scarcely characterized using cell-free systems and cells.

Methods

We characterized the activity of HAIC to inactivate reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase system, mitochondria (rat brain) and neural cells. ROS levels were estimated using ROS-sensitive probes, such as Amplex Red, MitoSOXRED.

Results

HAIC (with 2, 3 or 4 hydroxyl substituents) effectively scavenge ROS released from mitochondria. EC50 values estimated with mitochondria and submitochondrial particles were around 20 μM. Moreover, in PC12 and cultured neural primary cells, HAIC buffered cytosolic ROS. Although HAIC permeate biological membranes, HAIC fail to buffer matrix ROS in isolated mitochondria. We show that hydrogen peroxide was effectively abolished by HAIC, whereas the production of superoxide was not affected.

Conclusion

HAIC exert high antioxidative activity to reduce hydrogen peroxide. The antioxidative activity of HAIC is comparable with that of the stilbene-like, polyphenolic resveratrol, but much higher than that of trolox, N-acetylcysteine or melatonin.

General significance

Unlike resveratrol, HAIC do not impair mitochondrial ATP synthesis or Ca2+ retention by mitochondria. Thus, HAIC have the decisive advantage to be potent antioxidants with no detrimental side effects on mitochondrial functions.  相似文献   

11.

Background

Envenoming by Bothrops jararaca can result in local pain, edema, hemorrhage and necrosis, partially mediated by snake venom metalloproteinases (SVMPs). Here, we describe the characterization of BJ-PI2, a P-I class SVMP from B. jararaca venom, and its local tissue actions.

Methods

BJ-PI2 was purified by a combination of gel filtration, anion-exchange chromatography and reverse phase HPLC, and identified by mass spectrometry. Clotting and fibrin(ogen)olytic activities were assayed using conventional methods. Hemorrhagic activity and changes in vascular permeability were examined in rat dorsal skin. Myonecrosis and inflammatory activity were examined in mouse gastrocnemius muscle.

Results

BJ-PI2 was a 23.08 kDa single-chain polypeptide. Tryptic fragments showed highest homology with SVMP insularinase A from Bothrops insularis, but also with B. jararaca SVMP bothrojaractivase; less similarity was observed with B. jararaca SVMPs BJ-PI and jararafibrases II and IV. BJ-PI2 did not clot fibrinogen or rat citrated plasma but had α- and β-fibrinogenolytic activity (inhibited by EDTA and 1,10-phenanthroline but not by PMSF) and attenuated coagulation after plasma recalcification. BJ-PI2 had fibrinolytic activity. BJ-PI2 increased the vascular permeability of rat dorsal skin (inhibited by 1,10-phenanthroline). BJ-PI2 was not hemorrhagic or myonecrotic but caused migration of inflammatory cells. In contrast, venom was strongly hemorrhagic and myonecrotic but caused less infiltration of inflammatory cells.

Conclusions

BJ-PI2 is a non-hemorrhagic, non-myonecrotic, non-coagulant P-I class SVMP that may enhance vascular permeability and inflammatory cell migration in vivo.

General significance

BJ-PI2 contributes to enhanced vascular permeability and inflammatory cell migration after envenoming, but not to venom-induced hemorrhage and necrosis.  相似文献   

12.

Background

Gemcitabine (GEM) is used to treat various carcinomas and represents an advance in pancreatic cancer treatment. In the screening for DNA polymerase (pol) inhibitors, a glycoglycerolipid, monogalactosyl diacylglycerol (MGDG), was isolated from spinach.

Methods

Phosphorylated GEM derivatives were chemically synthesized. In vitro pol assay was performed according to our established methods. Cell viability was measured using MTT assay.

Results

Phosphorylated GEMs inhibition of mammalian pol activities assessed, with the order of their effect ranked as: GEM-5′-triphosphate (GEM-TP) > GEM-5′-diphosphate > GEM-5′-monophosphate > GEM. GEM suppressed growth in the human pancreatic cancer cell lines BxPC-3, MIAPaCa2 and PANC-1 although phosphorylated GEMs showed no effect. MGDG suppressed growth in these cell lines based on its selective inhibition of replicative pol species. Kinetic analysis showed that GEM-TP was a competitive inhibitor of pol α activity with nucleotide substrates, and MGDG was a noncompetitive inhibitor with nucleotide substrates. GEM combined with MGDG treatments revealed synergistic effects on the inhibition of DNA replicative pols α and γ activities compared with GEM or MGDG alone. In cell growth suppression by GEM, pre-addition of MGDG significantly enhanced cell proliferation suppression, and the combination of these compounds was found to induce apoptosis. In contrast, GEM-treated cells followed by MGDG addition did not influence cell growth.

Conclusions

GEM/MGDG enhanced the growth suppression of cells based on the inhibition of pol activities.

General significance

Spinach MGDG has great potential for development as an anticancer food compound and could be an effective clinical anticancer chemotherapy in combination with GEM.  相似文献   

13.

Background

There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated.

Methods

Here, films of N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments.

Results

We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations.

Conclusions

Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field.

General significance

This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

14.

Background

A growing number of cysteine-rich antimicrobial peptides (AMPs) have been isolated from plants and particularly from seeds. It has become increasingly clear that these peptides, which include lipid transfer proteins (LTPs), play an important role in the protection of plants against microbial infection.

Methods

Peptides from Coffea canephora seeds were extracted in Tris–HCl buffer (pH 8.0), and chromatographic purification of LTP was performed by DEAE and reverse-phase HPLC. The purified peptide was submitted to amino acid sequence, antimicrobial activity and mammalian α-amylase inhibitory analyses.

Results

The purified peptide of 9 kDa had homology to LTPs isolated from different plants. Bidimensional electrophoresis of the 9 kDa band showed the presence of two isoforms with pIs of 8.0 and 8.5. Cc-LTP1 exhibited strong antifungal activity, against Candida albicans, and also promoted morphological changes including the formation of pseudohyphae on Candida tropicalis, as revealed by electron micrograph. Our results show that Cc-LTP1 interfered in a dose-dependent manner with glucose-stimulated, H+-ATPase-dependent acidification of yeast medium and that the peptide permeabilized yeast plasma membranes to the dye SYTOX green, as verified by fluorescence microscopy. Interestingly, we also showed for the first time that the well characterized LTP1 family, represented here by Cc-LTP1, was also able to inhibit mammalian α-amylase activity in vitro.

Conclusions and general significance

In this work we purified, characterized and evaluated the in vitro effect on yeast of a new peptide from coffee, named Cc-LPT1, which we also showed, for the first time, the ability to inhibit mammalian α-amylase activity.  相似文献   

15.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

16.

Background

Previously, we identified two missense mutations in the chondroitin N-acetylgalactosaminyltransferase-1 gene in patients with neuropathy. These mutations are associated with a profound decrease in chondroitin N-acetylgalactosaminyltransferase-1 enzyme activity. Here, we describe a patient with neuropathy who is heterozygous for a chondroitin synthase-1 mutation. Chondroitin synthase-1 has two glycosyltransferase activities: it acts as a GlcUA and a GalNAc transferase and is responsible for adding repeated disaccharide units to growing chondroitin sulfate chains.

Methods

Recombinant wild-type chondroitin synthase-1 enzyme and the F362S mutant were expressed. These enzymes and cells expressing them were then characterized.

Results

The mutant chondroitin synthase-1 protein retained approximately 50% of each glycosyltransferase activity relative to the wild-type chondroitin synthase-1 protein. Furthermore, unlike chondroitin polymerase comprised of wild-type chondroitin synthase-1 protein, the non-reducing terminal 4-O-sulfation of GalNAc residues synthesized by chondroitin N-acetylgalactosaminyltransferase-1 did not facilitate the elongation of chondroitin sulfate chains when chondroitin polymerase that consists of the mutant chondroitin synthase-1 protein was used as the enzyme source.

Conclusions

The chondroitin synthase-1 F362S mutation in a patient with neuropathy resulted in a decrease in chondroitin polymerization activity and the mutant protein was defective in regulating the number of chondroitin sulfate chains via chondroitin N-acetylgalactosaminyltransferase-1. Thus, the progression of peripheral neuropathies may result from defects in these regulatory systems.

General significance

The elongation of chondroitin sulfate chains may be tightly regulated by the cooperative expression of chondroitin synthase-1 and chondroitin N-acetylgalactosaminyltransferase-1 in peripheral neurons and peripheral neuropathies may result from synthesis of abnormally truncated chondroitin sulfate chains.  相似文献   

17.

Background

Understanding the molecular mechanism through which proteins are functional at extreme high and low temperatures is one of the key issues in structural biology. To investigate this phenomenon, we have focused on two instructive truncated hemoglobins from Thermobifida fusca (Tf-trHbO) and Mycobacterium tuberculosis (Mt-trHbO); although the two proteins are structurally nearly identical, only the former is stable at high temperatures.

Methods

We used molecular dynamics simulations at different temperatures as well as thermal melting profile measurements of both wild type proteins and two mutants designed to interchange the amino acid residue, either Pro or Gly, at E3 position.

Results

The results show that the presence of a Pro at the E3 position is able to increase (by 8°) or decrease (by 4°) the melting temperature of Mt-trHbO and Tf-trHbO, respectively. We observed that the ProE3 alters the structure of the CD loop, making it more flexible.

Conclusions

This gain in flexibility allows the protein to concentrate its fluctuations in this single loop and avoid unfolding. The alternate conformations of the CD loop also favor the formation of more salt-bridge interactions, together augmenting the protein's thermostability.

General significance

These results indicate a clear structural and dynamical role of a key residue for thermal stability in truncated hemoglobins.  相似文献   

18.

Background

Bundles of unipolar actin filaments (F-actin), cross-linked via the actin-binding protein fascin, are important in filopodia of motile cells and stereocilia of inner ear sensory cells. However, such bundles are also useful as shuttles in myosin-driven nanotechnological applications. Therefore, and for elucidating aspects of biological function, we investigate if the bundle tendency to follow straight paths (quantified by path persistence length) when propelled by myosin motors is directly determined by material properties quantified by persistence length of thermally fluctuating bundles.

Methods

Fluorescent bundles, labeled with rhodamine-phalloidin, were studied at fascin:actin molar ratios: 0:1 (F-actin), 1:7, 1:4 and 1:2. Persistence lengths (Lp) were obtained by fitting the cosine correlation function (CCF) to a single exponential function: < cos(θ(0) − θ(s)) > = exp(−s / (2Lp)) where θ(s) is tangent angle; s: path or contour lengths. < > denotes averaging over filaments.

Results

Bundle-Lp (bundles < 15 μm long) increased from ~ 10 to 150 μm with increased fascin:actin ratio. The increase was similar for path-Lp (path < 15 μm), with highly linear correlation. For longer bundle paths, the CCF-decay deviated from a single exponential, consistent with superimposition of the random path with a circular path as suggested by theoretical analysis.

Conclusions

Fascin–actin bundles have similar path-Lp and bundle-Lp, both increasing with fascin:actin ratio. Path-Lp is determined by the flexural rigidity of the bundle.

General significance

The findings give general insight into mechanics of cytoskeletal polymers that interact with molecular motors, aid rational development of nanotechnological applications and have implications for structure and in vivo functions of fascin–actin bundles.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号