首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Background

The use of CD19 chimeric antigen receptor (CAR) T cells to treat B-cell malignancies has proven beneficial. Several groups use serum to produce CD19 CAR T cells. Today, ready-to-use serum-free media that require no addition of serum are commercially available. Therefore, it becomes important to evaluate the production of CD19 CAR T cells with and without the addition of serum.

Methods

T cells from buffy coats were cultured in AIM-V and TexMACS (TM) supplemented with 5% human serum (A5% and TM5%, respectively), and in TM without serum. Cells were activated with OKT3 and expanded in interleukin (IL)-2. Viral transduction was performed in RetroNectin-coated plates using the spinoculation method. CD19 CAR T cells were tested for their viability, expansion, transduction efficacy, phenotype and cytotoxicity.

Results

CD19 CAR T cells expanded in A5% and TM5% showed significantly better viability and higher fold expansion than cells expanded in TM. TM promoted the expansion of CD8+ T cells and effector phenotype of CD19 CAR T cells. The transduction efficacy and the cytotoxic function were comparable between the different media. Higher CD107a+ cells were detected in TM and TM5%, whereas higher IL-2+ and IL-17+ cells were detected in A5%. CD19 CAR exhibited co-expression of inhibitory receptors such as TIM-3+LAG-3+ and/or TIM-3+PD-1+.

Conclusion

Our results indicate that serum supplementation promotes better CD19 CAR T-cell expansion and viability in vitro. CD19 CAR T cells produced in TM medium showed lower CD4/CD8 ratio, which warrants further evaluation in clinical settings. Overall, the choice of culture medium impacts CD19 CAR T-cell end product.  相似文献   

2.

Background aims

Adoptive cell therapy employing natural killer group 2D (NKG2D) chimeric antigen receptor (CAR)-modified T cells has demonstrated preclinical efficacy in several model systems, including hematological and solid tumors. We present comprehensive data on manufacturing development and clinical production of autologous NKG2D CAR T cells for treatment of acute myeloid leukemia and multiple myeloma (ClinicalTrials.gov Identifier: NCT02203825). An NKG2D CAR was generated by fusing native full-length human NKG2D to the human CD3ζ cytoplasmic signaling domain. NKG2D naturally associates with native costimulatory molecule DAP10, effectively generating a second-generation CAR against multiple ligands upregulated during malignant transformation including MIC-A, MIC-B and the UL-16 binding proteins.

Methods

CAR T cells were infused fresh after a 9-day process wherein OKT3-activated T cells were genetically modified with replication-defective gamma-retroviral vector and expanded ex vivo for 5 days with recombinant human interleukin-2.

Results

Despite sizable interpatient variation in originally collected cells, release criteria, including T-cell expansion and purity (median 98%), T-cell transduction (median 66% CD8+ T cells), and functional activity against NKG2D ligand-positive cells, were met for 100% of healthy donors and patients enrolled and collected. There was minimal carryover of non–T cells, particularly malignant cells; both effector memory and central memory cells were generated, and inflammatory cytokines such as granulocyte colony-stimulating factor, RANTES, interferon-γ and tumor necrosis factor-α were selectively up-regulated.

Conclusions

The process resulted in production of required cell doses for the first-in-human phase I NKG2D CAR T clinical trial and provides a robust, flexible base for further optimization of NKG2D CAR T-cell manufacturing.  相似文献   

3.

Background

Tyrosin kinase inhibitors (TKIs) and monoclonal antibodies aimed to target epidermal growth factor receptor (EGFR) have shown limited effect as monotherapies and drug resistance is a major limitation for therapeutic success. Adjuvant therapies to EGFR targeting therapeutics are therefore of high clinical relevance.

Methods

Three EGFR targeting drugs, Cetuximab, Erlotinib and Tyrphostin AG1478 were used in combination with photodynamic therapy (PDT) in two EGFR positive cell lines, A-431 epidermoid skin carcinoma and WiDr colorectal adenocarcinoma cells. The amphiphilic meso-tetraphenylporphine with 2 sulphonate groups on adjacent phenyl rings (TPPS2a) was utilized as a photosensitizer for PDT. The cytotoxic outcome of the combined treatments was evaluated by cell counting and MTT. Cellular signalling was explored by Western blotting.

Results

PDT as neoadjuvant to Tyrphostin in A-431 cells as well as to Tyrphostin or Erlotinib in WiDr cells revealed synergistic cytotoxicity. In contrast, Erlotinib or Cetuximab combined with neoadjuvant PDT induced an antagonistic effect on cell survival of A-431 cells. Neoadjuvant PDT and EGFR targeting therapies induced a synergistic inhibition of ERK as well as synergistic cytotoxicity only when the EGFR targeting monotherapies caused a prolonged ERK inhibition. There were no correlation between EGFR inhibition by the EGFR targeting monotherapies or the combined therapies and the cytotoxic outcome combination-therapies.

Conclusions

The results suggest that sustained ERK inhibition by EGFR targeting monotherapies is a predictive factor for synergistic cytotoxicity when combined with neoadjuvant PDT.

General significance

The present study provides a rationale for selecting anticancer drugs which may benefit from PDT as adjuvant therapy.  相似文献   

4.

Background

Phloxine B (PhB; 2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-fluorescein), an artificial xanthene colorant, has been used as a red coloring agent in drugs and cosmetics as well as foods in some countries. However, little effort has been devoted to the study of this colorant as a potentially useful medicinal agent.

Methods

We investigated the daily light-induced photocytotoxicity of PhB in two human leukemia cells, HL-60 and Jurkat, and its underlying mechanisms by in vitro experiments using antioxidants.

Reuslts and conclusions

PhB inhibited cell proliferation more preferentially to HL-60 cells than to Jurkat cells. Co-treatment of catalase completely blocked the photocytotoxicity by PhB in HL-60 cells, whereas the effect of histidine was only partial, suggesting that hydrogen peroxide (H2O2), rather than singlet oxygen, might be a prerequisite for the PhB-induced HL-60 cell death. Actually, PhB produced a significant amount of H2O2 in the media as well as in the cells in concentration- and light-dependent manners. Furthermore, methionine, a hypochlorous acid (HOCl) scavenger, also significantly attenuated the cytotoxicity in HL-60 cells, but not in Jurkat cells, indicating the involvement of myeloperoxidase (MPO)-dependent hypohalous acid formation during the photocytotoxicity. In vitro experiments revealed that halogenated tyrosine was generated from the reaction of bovine serum albumin with PhB and HL-60 cell lysate. The present findings suggested that PhB induced a differential photodynamic action in the MPO-containing leukemia cells through an H2O2-dependent mechanism.

General significance

Our findings provide new insights into the molecular mechanisms underlying the PhB-induced apoptosis and also evaluated PhB as a promising PDT agent.  相似文献   

5.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

6.
Synergistic effect of combined antibodies targeting distinct epitopes of a particular tumour antigen has encouraged some clinical trial studies and is now considered as an effective platform for cancer therapy. Providing several advantages over conventional antibodies, variable domain of heavy chain of heavy chain antibodies (VHH) is now major tools in diagnostic and therapeutic applications. Active targeting of liposomal drugs is a promising strategy, resulting in enhanced binding and improved cytotoxicity of tumour cells. In the present study, we produced four anti-HER2 recombinant VHHs and purified them via native and refolding method. ELISA and flow cytometry analysis confirmed almost identical function of VHHs in refolded and native states. Using a mixture of four purified VHHs, PEGylated liposomal doxorubicin was targeted against HER2-overexpressing cells. The drug release was analyzed at pH 7.4, 6.4 and 5.5 and dynamic light-scattering detector and TEM micrograph was applied to characterize the produced nanoparticles. The binding efficiency of these nanoparticles to BT474 and SKBR3 as HER2-positive and MCF10A as HER2-negative cell line was examined by flow cytometry. Our results indicated effective encapsulation of about 94% of the total drug in immunoliposomes. Flow cytometry results verified receptor-specific binding of targeted liposomes to SKBR3 and BT474 cell lines and more efficient binding was observed for liposomes conjugated with oligoclonal VHHs mixture compared with monoclonal VHH-targeted liposomes. Oligoclonal nanoparticles also showed more cytotoxicity compared with non-targeted liposomes against HER2-positive tumour cells. Oligoclonal targeting of liposomes was represented as a promising strategy for the treatment of HER2-overexpressing breast cancers.  相似文献   

7.

Background

Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.

Scope of review

This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.

Major conclusions

Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.

General significance

Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

8.

Background

Galectin-3 is expressed in a variety of tumors and its expression level is related with tumor progression. Aberrant expression of MUC1 in various tumors is also associated with a poor prognosis. It has been reported that MUC1 is a natural ligand of galectin-3.

Methods

A stable MUC1 transfectant was produced by introducing MUC1 cDNA into mouse 3T3 fibroblasts (MUC1/3T3 cells). MUC1 was prepared from MUC1/3T3 cells; MUC1-N-terminal domain (MUC1-ND) and -C-terminal domain (MUC1-CD) were separated by CsCl ultracentrifugation, and then the galectin-3-binding domain was determined by co-immuniprecipitation assay. After ligation of galectin-3 to 3T3/MUC1 cells, MUC1-CD was immunoprecipitated from the cell lysate. The immunoprecipitate was subjected to SDS-PAGE and Western blotting, followed by detection of co-immunoprecipitated β-catenin.

Results

Galectin-3 binds to the N-terminal domain of MUC1 but not to the C-terminal one. Galectin-3 present on the cell surface increased with the expression of MUC1 and is colocalized with MUC1. It should be noted that β-catenin was detected in the immunoprecipitate with anti-MUC1-CD Ab from a lysate of galectin-3-treated 3T3/MUC1 cells.

Conclusions

Galectin-3 binds to MUC1-ND and triggers MUC1-mediated signaling in 3T3/MUC1 cells, leading to recruitment of β-catenin to MUC1-CD.

General significance

This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated pathway.  相似文献   

9.

Background

There is a continuous demand for new immunosuppressive agents for organ transplantation. Galectin-9, a member of the galactoside-binding animal lectin family, has been shown to suppress pathogenic T-cell responses in autoimmune disease models and experimental allograft transplantation. In this study, an attempt has been made to develop new collagen matrices, which can cause local, contact-dependent immune suppression, using galectin-9 and collagen-binding galectin-9 fusion proteins as active ingredients.

Methods

Galectin-9 and galectin-9 fusion proteins having collagen-binding domains (CBDs) derived from bacterial collagenases and a collagen-binding peptide (CBP) were tested for their ability to bind to collagen matrices, and to induce Jurkat cell death in solution and in the collagen-bound state.

Results

Galectin-9-CBD fusion proteins exhibited collagen-binding activity comparable to or lower than that of the respective CBDs, while their cytocidal activity toward Jurkat cells in solution was 80 ~ 10% that of galectin-9. Galectin-9 itself exhibited oligosaccharide-dependent collagen-binding activity. The growth of Jurkat cells cultured on collagen membranes treated with galectin-9 was inhibited by ~ 90%. The effect was dependent on direct cell-to-membrane contact. Galectin-9-CBD/CBP fusion proteins bound to collagen membranes via CBD/CBP moieties showed a low or negligible effect on Jurkat cell growth.

Conclusions

Among the proteins tested, galectin-9 exhibited the highest cytocidal effect on Jurkat cells in the collagen-bound state. The effect was not due to galectin-9 released into the culture medium but was dependent on direct cell-to-membrane contact.

General significance

The study demonstrates the possible use of galectin-9-modified collagen matrices for local, contact-dependent immune suppression in transplantation.  相似文献   

10.

Background

Synthesis of selenoproteins such as glutathione peroxidases (GPx) requires a specific tRNA and a stem-loop structure in the 3′untranslated region (3′UTR) of the mRNA. A common single nucleotide polymorphism occurs in the GPX4 gene in a region corresponding to the 3′UTR.

Methods

The two variant 3′UTR sequences were linked to sequences from a selenoprotein reporter gene (iodothyronine deiodinase) and expressed in Caco-2 cells. Clones expressing comparable levels of deiodinase (assessed by real-time PCR) were selected and their response to tert-butyl hydroperoxide assessed by cell viability and measurement of reactive oxygen species. Selenoprotein expression was assessed by real-time PCR, enzyme activity and immunoassay.

Results

When selenium supply was low, cells overexpressing the C variant 3′UTR showed lower viability after oxidative challenge, increased levels of reactive oxygen species and lower GPx activity and SelH mRNA expression compared to cells overexpressing the T variant. After selenium supplementation, cell viability and GPx4 expression were higher in the cells overexpressing the C variant. Expression of transgenes incorporating the T/C variant GPX4 (rs713041) sequences in Caco-2 cells leads to alterations in both cell viability after an oxidative challenge and selenoprotein expression. This suggests that the two variants compete differently in the selenoprotein hierarchy.

General Significance

The data provide evidence that the T/C variant GPX4 (rs713041) alters the pattern of selenoprotein synthesis if selenium intake is low. Further work is required to assess the impact on disease susceptibility.  相似文献   

11.

Background aims

Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions.

Methods

We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression.

Results

T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR.

Discussion

These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.  相似文献   

12.

Background

Oxidative damage to the cell, including the formation of 8-oxoG, has been regarded as a significant factor in carcinogenesis and aging. An inbred prematurely aging rat strain (OXYS) is characterized by high sensitivity to oxidative stress, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases including learning and memory deterioration.

Methods

We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) and 8-oxoguanine DNA glycosylase (OGG1) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative amounts and distribution of 8-oxoG and OGG1 in various cells of different brain regions from OXYS and control Wistar rats.

Results

It was shown that 8-oxoG increased with age in mature neurons, nestin- and glial fibrillary acidic protein (GFAP)-positive cells of hippocampus and frontal cortex in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. The relative content of 8-oxoG and OGG1 in nestin- and GFAP-positive cells was higher than in mature neurons in both Wistar and OXYS rats. However, there was no significant interstrain difference in the content of OGG1 for all types of cells and brain regions analyzed, and no difference in the relative content of 8-oxoG between different brain regions.

Conclusions

Oxidation of guanine may play an important role in the development of age-associated decrease in memory and learning capability of OXYS rats.

General significance

The findings are important for validation of the OXYS rat strain as a model of mammalian aging.  相似文献   

13.

Objectives

To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins.

Results

AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed “CELiD” DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with “CELiD” DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %.

Conclusions

The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.
  相似文献   

14.

Background

Hydroxy-1-aryl-isochromans (HAIC) are newly emerging natural polyphenolic antioxidants, enriched in extravirgin olive oil, whose antioxidative potency was only scarcely characterized using cell-free systems and cells.

Methods

We characterized the activity of HAIC to inactivate reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase system, mitochondria (rat brain) and neural cells. ROS levels were estimated using ROS-sensitive probes, such as Amplex Red, MitoSOXRED.

Results

HAIC (with 2, 3 or 4 hydroxyl substituents) effectively scavenge ROS released from mitochondria. EC50 values estimated with mitochondria and submitochondrial particles were around 20 μM. Moreover, in PC12 and cultured neural primary cells, HAIC buffered cytosolic ROS. Although HAIC permeate biological membranes, HAIC fail to buffer matrix ROS in isolated mitochondria. We show that hydrogen peroxide was effectively abolished by HAIC, whereas the production of superoxide was not affected.

Conclusion

HAIC exert high antioxidative activity to reduce hydrogen peroxide. The antioxidative activity of HAIC is comparable with that of the stilbene-like, polyphenolic resveratrol, but much higher than that of trolox, N-acetylcysteine or melatonin.

General significance

Unlike resveratrol, HAIC do not impair mitochondrial ATP synthesis or Ca2+ retention by mitochondria. Thus, HAIC have the decisive advantage to be potent antioxidants with no detrimental side effects on mitochondrial functions.  相似文献   

15.
Jie Sun  Michel Sadelain 《Cell research》2015,25(12):1281-1282
Chimeric antigen receptors (CARs) are synthetic receptors capable of directing potent antigen-specific anti-tumor T cell responses. A recent report by Wu et al. extends a series of strategies aiming to curb excessive T cell activity, utilizing in this instance a chemical dimerizer to aggregate antigen-binding, T cell-activating and costimulatory domains.Chimeric antigen receptor (CAR) therapy relies on T cell engineering to generate tumor-targeted T cells with enhanced anti-tumor functions1. CAR therapy has so far achieved its most remarkable clinical successes against CD19-positive hematological malignancies and is now on the verge of being developed for solid tumors2. Two safety concerns have, however, emerged from the CD19 experience, which should be addressed for CAR therapy to be broadly applicable. One is the eventual on-target/off-tumor effect of CAR T cells on normal tissues. Even though this concern may be mitigated in the case of CD19 CAR T cell-induced B cell aplasia, strategies designed to reduce or prevent its potential occurrence with other targets are needed2. The other concern is a severe cytokine release syndrome (CRS), arising from large-scale synchronized T cell activation upon engaging the target antigen in some CAR T cell recipients2.Several innovative strategies have been recently proposed to address these safety concerns. These strategies make use of remote or cell autonomous controls (Figure 1), utilizing small molecules, antibodies or synthetic receptors to regulate T cell activity. One approach is to activate a latent suicide switch, such as the inducible caspase-9 (iCasp9) enzyme, through the administration of a small molecule to induce T cell apoptosis3 (Figure 1a). Bifunctional small molecules that mediate the binding between antigen and CAR have also been developed to regulate target engagement4 (Figure 1b). A variation on this approach uses antibodies to mediate antigen recognition on target cells and binding of T cells expressing a synthetic Fc receptor5 (Figure 1b). These designs enable remote temporal control of T cell activity but do not provide a means to enhance tumor selectivity of the CAR T cells. To this end, combinatorial approaches integrating two autonomous antigen inputs to control CAR T cell functions have been developed to spatially discriminate between normal and tumor cells expressing a common target. One such approach utilizes synthetic inhibitory receptors, termed iCARs, which are derived from the PD-1 or CTLA-4 receptors, to protect normal cells based on the iCAR''s recognition of an antigen present on the normal cells but not the tumor cells6 (Figure 1c). Another approach utilizes complementary signals split between two receptors — a CAR for T cell activation and a chimeric costimulatory receptor (CCR) providing costimulation — such that they are both expressed by the tumor cells but found alone on normal cells7 (Figure 1d). Acting in cell autonomous fashion, the required co-engagement of the CCR and the CAR upon recognition of two independent antigens reinforces tumor selectivity in vivo7.Open in a separate windowFigure 1Building controls into engineered T cells. (a) The small molecule AP1903 can dimerize the suicide switch iCasp9 to induce T cell apoptosis. (b) Bifunctional small molecule bridging the binding between antigen and CAR or antibody mediating the interaction between antigen and synthetic Fc receptor can be remote controls of CAR T cells. (c) iCAR can inhibit CAR function in the presence of an antigen present in normal cells but not tumor cells. (d) CCR binding to a second antigen in tumor cells is required for full T cell activation. (e) The small molecule AP21976 can dimerize two independent signaling entities through an FKBP-FRB module to control T cell activation. (a, b, e) Strategies employing one remote control (antibody or small molecule) in addition to one autonomous control (antigen A). (c, d) Strategies with two autonomous controls (antigen A and antigen B). Negative regulation involves inducing apoptosis (a) or turning off T cell activation (c) by input 2 while positive regulation (b, d, e) results in T cell activation by input 2.In a recent paper published in Science, Wu et al.8 showed a novel design incorporating a remote control of CAR T cells, whereby a small molecule is used to dimerize antigen-binding and signaling domains (Figure 1e). At variance with the small molecule-controlled suicide switch, this ON-switch design represents a positive reversible regulation, as it does not eliminate T cells but rather restricts their activities. The remote control takes advantage of well-established chemically induced dimerization (CID) modules developed in the 1990s, where two proteins bind only in the presence of a third chemical, such as a small molecule9. One such widely used CID module is the FKBP and FRBT2098L that heterodimerize in the presence of rapamycin or its less immunosuppressive analog AP21976. The receptor for antigen and a dual-signaling, costimulatory and activating domain analogous to that of a second generation CAR, were independently fused to FKBP and FRBT2098L so that AP21976-induced FKBP and FRBT2098L dimerization could aggregate these entities (Figure 1e). This design controls intracellular assembly of a signaling complex without affecting the antigen binding properties as afforded by the bifunctional small molecules or antibodies at the interface of T cells and target cells (Figure 1b). After screening various domain configurations in leukemic Jurkat cells with AP21976-dependent NFAT activation and IL-2 production assays, a design that worked with both the FKBP-FRBT2098L and the gibberellin-induced GID1-GAI heterodimerization modules was identified. Single molecule imaging of ON-switch CAR assembly in Jurkat cells showed that two molecular parts are equally constrained to immobilized antigens only in the presence of AP21976. Subsequent characterization of the ON-switch CAR in primary human CD4+ T cells showed that both AP21976 and antigen are required for the induction of CD69 expression, a biomarker of T cell activation, the secretion of both IL-2 and IFNγ, and the proliferation of CD4+ cells. Most gratifyingly, there was a positive correlation between these responses and the AP21976 dosage, suggesting the possibility of achieving titratable control of T cells. Human primary CD8+ T cells with ON-switch CAR in three different cytotoxicity assays also demonstrated antigen- and AP21976-dependent killing of tumor cells, which was also titratable by AP21976. The killing ability of ON-switch CAR CD8+ T cells was reversible, as removal of AP21976 abrogated tumor cell lysis.Wu et al. proceeded to explore in vivo activity in a mouse xenograft model. Due to the short plasma half-life and the high cost of AP21976, the study is limited to a very short-term protocol of 39 h. Tumor cells were injected into the peritoneal cavity 14 h prior to the injection of the engineered T cells. Four injections of AP21976 in the subsequent 25 h were required to induce anti-tumor activity in this intraperitoneal cytotoxicity assay. Further investigations with a more relevant protocol allowing for tumor engraftment and longer term follow-up of T cell effectiveness will be needed to establish whether AP21976 can remotely control ON-switch CAR T cells to reject a tumor.Wu and coauthors have thus engineered a novel ON-switch CAR design and demonstrated titratable, reversible and antigen-dependent T cell functions controlled by a dimerizing small molecule. Another group is also conducting preclinical studies exploring a variant small molecule-controlled CAR design for solid tumor rejection10. However, there are still challenges to address before future clinical applications. The authors pointed out the need to develop controller chemicals that have clinically optimized pharmacokinetic properties, as the half-life of AP21976 is short and impractical for clinical application. Thus, how many injections per day, for how many weeks or months, would be required to achieve tumor rejection? Another unresolved question is whether a small molecule with optimal pharmacokinetic properties could effectively curb CRS and off-tumor reactivity. Overall, this elegant study provides valuable insights for further refining spatio-temporal control of cell therapy and applying it to CAR T cell technology.  相似文献   

16.

Background

Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis.

Methodology/Principal Findings

Antibodies for Mycobacterium tuberculosis (M. tb) recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH) binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA) tests and soluble antigen by surface plasmon resonance (SPR) analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis) and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp). The highest affinity VHH had a dissociation constant (KD) of 4×10−10 M.

Conclusions/Significance

A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria.  相似文献   

17.

Background

Gemcitabine (GEM) is used to treat various carcinomas and represents an advance in pancreatic cancer treatment. In the screening for DNA polymerase (pol) inhibitors, a glycoglycerolipid, monogalactosyl diacylglycerol (MGDG), was isolated from spinach.

Methods

Phosphorylated GEM derivatives were chemically synthesized. In vitro pol assay was performed according to our established methods. Cell viability was measured using MTT assay.

Results

Phosphorylated GEMs inhibition of mammalian pol activities assessed, with the order of their effect ranked as: GEM-5′-triphosphate (GEM-TP) > GEM-5′-diphosphate > GEM-5′-monophosphate > GEM. GEM suppressed growth in the human pancreatic cancer cell lines BxPC-3, MIAPaCa2 and PANC-1 although phosphorylated GEMs showed no effect. MGDG suppressed growth in these cell lines based on its selective inhibition of replicative pol species. Kinetic analysis showed that GEM-TP was a competitive inhibitor of pol α activity with nucleotide substrates, and MGDG was a noncompetitive inhibitor with nucleotide substrates. GEM combined with MGDG treatments revealed synergistic effects on the inhibition of DNA replicative pols α and γ activities compared with GEM or MGDG alone. In cell growth suppression by GEM, pre-addition of MGDG significantly enhanced cell proliferation suppression, and the combination of these compounds was found to induce apoptosis. In contrast, GEM-treated cells followed by MGDG addition did not influence cell growth.

Conclusions

GEM/MGDG enhanced the growth suppression of cells based on the inhibition of pol activities.

General significance

Spinach MGDG has great potential for development as an anticancer food compound and could be an effective clinical anticancer chemotherapy in combination with GEM.  相似文献   

18.

Background

Morphine has been shown to affect the function of immune system, but the precise mechanism remains to be elucidated. The present study was aimed to clarify the mechanism for the morphine-induced immune suppression by analyzing the direct effect of morphine on human CD3+ T cells.

Methods

To identify genes up-regulated by action of morphine on the opioid receptor expressed in CD3+ T cells, PCR-select cDNA subtraction was performed by the use of total RNA from human CD3+ T cells treated with morphine in the presence and absence of naloxone.

Results

We show that p53 and damage-specific DNA binding protein 2 (ddb2) genes are up-regulated by morphine in a naloxone-sensitive manner. Furthermore, the results indicate that DNA damage, quantified by apurinic–apyrimidinic site counting assay and phosphorylation of Ser-15 in P53 protein, is induced in CD3+ T cells by morphine in a naloxone-sensitive manner.

General significance

Because it was shown that only the κ opioid receptor gene is expressed in CD3+ T cells in the opioid receptor family, the present study suggests that morphine induces DNA damage through the action on the κ opioid receptor, which leads to immune suppression by activation of P53-mediated signal transduction.  相似文献   

19.

Background

The activation of various P2 receptors (P2R) by extracellular nucleotides promotes diverse cellular events, including the stimulation of cell signaling protein and increases in [Ca2+]i. We report that some agents that can block P2X7R receptors also promote diverse P2X7R-independent effects on cell signaling.

Methods

We exposed native rat parotid acinar cells, salivary gland cell lines (Par-C10, HSY, HSG), and PC12 cells to suramin, DIDS (4,4′-diisothiocyano stilbene-2,2′-disulfonic acid), Cibacron Blue 3GA, Brilliant Blue G, and the P2X7R-selective antagonist A438079, and examined the activation/phosphorylation of ERK1/2, PKCδ, Src, CDCP1, and other signaling proteins.

Results

With the exception of suramin, these agents blocked the phosphorylation of ERK1/2 by BzATP in rat parotid acinar cells; but higher concentrations of suramin blocked ATP-stimulated 45Ca2+ entry. Aside from A438079, these agents increased the phosphorylation of ERK1/2, Src, PKCδ, and other proteins (including Dok-1) within minutes in an agent- and cell type-specific manner in the absence of a P2X7R ligand. The stimulatory effect of these compounds on the tyrosine phosphorylation of CDCP1 and its Src-dependent association with PKCδ was blocked by knockdown of CDCP1, which also blocked Src and PKCδ phosphorylation.

Conclusions

Several agents used as P2X7R blockers promote the activation of various signaling proteins and thereby act more like receptor agonists than antagonists.

General significance

Some compounds used to block P2 receptors have complicated effects that may confound their use in blocking receptor activation and other biological processes for which they are employed, including their use as blockers of various ion transport proteins.  相似文献   

20.

Background

We previously demonstrated that the CC-chemokine Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES)/CCL5 exerts pro-tumoral effects on human hepatoma Huh7 cells through its G protein-coupled receptor, CCR1. Glycosaminoglycans play major roles in these biological events.

Methods

In the present study, we explored 1/ the signalling pathways underlying RANTES/CCL5-mediated hepatoma cell migration or invasion by the use of specific pharmacological inhibitors, 2/ the role of RANTES/CCL5 oligomerization in these effects by using a dimeric RANTES/CCL5, 3/ the possible involvement of two membrane heparan sulfate proteoglycans, syndecan-1 (SDC-1) and syndecan-4 (SDC-4) in RANTES/CCL5-induced cell chemotaxis and spreading by pre-incubating cells with specific antibodies or by reducing SDC-1 or -4 expression by RNA interference.

Results and conclusion

The present data suggest that focal adhesion kinase phosphorylation, phosphoinositide 3-kinase-, mitogen-activated protein kinase- and Rho kinase activations are involved in RANTES/CCL5 pro-tumoral effects on Huh7 cells. Interference with oligomerization of the chemokine reduced RANTES/CCL5-mediated cell chemotaxis. This study also indicates that SDC-1 and -4 may be required for HepG2, Hep3B and Huh7 human hepatoma cell migration, invasion or spreading induced by the chemokine. These results also further demonstrate the involvement of glycosaminoglycans as the glycosaminoglycan-binding deficient RANTES/CCL5 variant, in which arginine 47 was replaced by lysine, was devoid of effect.

General significance

The modulation of RANTES/CCL5-mediated cellular effects by targeting the chemokine-syndecan interaction could represent a new therapeutic approach for hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号