首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evodiamine, a quinolone alkaloid, is one of the major bioactive compounds of Evodia rutaecarpa Bentham (Rutaceae). It exhibits excellent biological activities, especially the anticancer activity. This study aims to investigate the effect of evodiamine on the proliferation of leukemia cell line K562 and to explore the underlying mechanism. The effect of evodiamine on K562 cells proliferation was analyzed by trypan blue dye exclusion assay and MTT assay. The expression levels of peroxisome proliferators-activated receptor gamma (PPARγ), cyclin D1, and p21 were detected by western blot assay. The results demonstrated that evodiamine inhibited the proliferation and decreased the viability of K562 cells in a dose- and time-dependent manner. 2-Chloro-5-nitro-N-phenylbenzamide (GW9662) and/or PPARγ-siRNA pretreatment alleviated the cell growth suppression triggered by evodiamine. Meanwhile, evodiamine intervention elevated the expression of PPARγ in K562 cells, while pretreatment with GW9662 attenuated the enhanced upregulation of PPARγ expression induced by evodiamine. In addition, GW9662 and PPARγ-siRNA pretreatment also significantly attenuated the downregulation of the cell cycle control protein cyclin D1 and the upregulation of cyclin-dependent kinase inhibitor p21 induced by evodiamine. In conclusion, PPARγ signaling pathway may involve in the proliferation inhibition of evodiamine on K562 cells via inhibiting cylcin D1 and stimulating of p21.  相似文献   

2.
Glioblastoma (GBM) is one of the most common and lethal forms of primary brain tumors in human adults. Treatment options are limited, and in most cases ineffective. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases like cancer. ε-viniferin is a resveratrol dimer and well known for having antiproliferative and apoptotic effects on cancer cells. Cisplatin is a platinum containing anti-cancer drug. In this study, we aimed to investigate antiproliferative and apoptotic effects of using cis-platin and ε-viniferin alone or in combined treatment of C6 cells. Cell proliferation was detected by WST-1. Mitochondrial membrane potential changes in the cells (ΔΨm) were evaluated using cationic dye JC1. Apoptotic index which is a hallmark of late apoptosis was detected by using Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method and apoptotic alterations were observed by transmission electron microscope (TEM). Activation of caspase-8, -9, -3 in C6 cells at various incubation periods was measured by flow cytometer. Apoptotic index increased at highest level in only combined treatment cells (91.6%) after 48 h incubation. These results were supported by TEM images. Caspase-8 activation in C6 cells increased to a maximum (12.5%) after 6 h by using combined cis-platin/ε-viniferin treatment (13.25/95 μM). Caspase-9 was activated at 44.5% after combined treatment for 24 h. This rate is higher than using cis-platin (14.2%) or ε-viniferin (43.3%) alone. The combined 13.25 μM/cisplatin and 95 μM ε-viniferin treatment caused maximum caspase-3 activation in C6 cells (15.5%) at the end of the 72 h incubation. In conclusion, it was observed that caspase-8, -9, -3 activation which was determined in vitro, trigerred apoptotic mechanism in C6 cells by using low concentrations of combined cis-platin and ε-viniferin.  相似文献   

3.
4.
5.
Accumulation of cholesterol by macrophage uptake of LDL is a key event in the formation of atherosclerotic plaques. Previous research has shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) is present in atherosclerotic plaques and promotes aortic lipid accumulation. However, it has not been determined whether murine GM-CSF-differentiated macrophages take up LDL to become foam cells. GM-CSF-differentiated macrophages from LDL receptor-null mice were incubated with LDL, resulting in massive macrophage cholesterol accumulation. Incubation of LDL receptor-null or wild-type macrophages with increasing concentrations of 125I-LDL showed nonsaturable macrophage LDL uptake that was linearly related to the amount of LDL added, indicating that LDL uptake was mediated by fluid-phase pinocytosis. Previous studies suggest that phosphoinositide 3-kinases (PI3K) mediate macrophage fluid-phase pinocytosis, although the isoform mediating this process has not been determined. Because PI3Kγ is known to promote aortic lipid accumulation, we investigated its role in mediating macrophage fluid-phase pinocytosis of LDL. Wild-type macrophages incubated with LDL and the PI3Kγ inhibitor AS605240 or PI3Kγ-null macrophages incubated with LDL showed an ∼50% reduction in LDL uptake and cholesterol accumulation compared with wild-type macrophages incubated with LDL only. These results show that GM-CSF-differentiated murine macrophages become foam cells by fluid-phase pinocytosis of LDL and identify PI3Kγ as contributing to this process.  相似文献   

6.
We investigated mechanisms whereby peroxisome proliferator-activated receptor γ (PPARγ) agonism redistributes lipid from visceral (VF) toward subcutaneous fat (SF) by studying the impact of PPARγ activation on VF and SF glucose uptake and metabolism, lipogenesis, and enzymes involved in triacylglycerol (TAG) synthesis. VF (retroperitoneal) and SF (inguinal) of rats treated or not for 7 days with rosiglitazone (15 mg/kg/day) were evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (or lipin-1), and diacylglycerol acyltransferase. Rosiglitazone increased SF glucose uptake, GLUT4 mRNA, and insulin-stimulated glucose oxidation, conversion to lactate, glycogen, and the glycerol and fatty acid components of TAG. In VF, only glucose incorporation into TAG-glycerol was stimulated by rosiglitazone and less so than in SF (1.5- vs. 3-fold). mRNA levels of proteins involved in glycolysis, Krebs cycle, glycogen synthesis, and lipogenesis were markedly upregulated by rosiglitazone in SF and again less so in VF. Rosiglitazone activated TAG-glycerol synthesis in vivo (2.8- vs. 1.9-fold) and lipin activity (4.6- vs. 1.5-fold) more strongly in SF than VF, whereas GPAT activity was increased similarly in both depots. The preferential increase in glucose uptake and intracellular metabolism in SF contributes to the PPARγ-mediated redistribution of TAG from VF to SF, which in turn favors global insulin sensitization.  相似文献   

7.
8.
The activation of nuclear receptors, peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha (LXRα), has been shown to inhibit the growth of prostate cancer cells. This study examined whether the anti-proliferative effect of lycopene on androgen-dependent human prostate cancer (LNCaP) cells involves the up-regulation of the expression of PPARγ and LXRα. As expected, lycopene treatment (2.5-10 μM) significantly inhibited the proliferation of LNCaP cells during incubation for 96 h. Lycopene significantly increased the protein and mRNA expression of PPARγ and LXRα at 24 and 48 h, while the increased in the expression of ATP-binding cassette transporter 1 (ABCA1) was only evident 96 h. In addition, lycopene significantly decreased cellular total cholesterol levels and increased apoA1 protein expression at 96 h. Incubation of LNCaP cells with lycopene (10 μM) in the presence (20 μM) of a specific antagonist of PPARγ (GW9662) and LXRα (GGPP) restored the proliferation of LNCaP cells to the control levels and significantly suppressed protein expression of PPARγ and LXRα as well as increased cellular total cholesterol levels. LXRα knockdown by siRNA against LXRα significantly enhanced the proliferation of LNCaP cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 μM) restored the proliferation to the control level. The present study is the first to demonstrate that the anti-proliferative effect of lycopene on LNCaP cells involves the activation of the PPARγ-LXRα-ABCA1 pathway, leading to reduced cellular total cholesterol levels.  相似文献   

9.
Senescent cells have been observed in certain aged or damaged tissues. However, the information about the effects of aging on liver cells is limited. In the present study, we have examined age-related histological changes in the livers of senescence marker protein knockout (SMP30-/-) mice, which are considered as a murine aging model due to the more sensitive response to apoptotic reagents and due to their shorter life span. In livers of old SMP30-/- mice, numerous hepatic stellate cells (HSCs) were hypertrophic and contained abundant microvesicular lipid droplets in cytoplasm. We have found that the expression of peroxisome proliferators-activated receptor γ (PPARγ), which is a protein related to lipid metabolism and HSC quiescence, was increased in hypertrophic HSCs by aging and vitamin C (VC) deficiency, whereas these phenomena were dramatically reduced by antioxidant treatment. Therefore, these prominent phenotypic changes can be considered as aging markers in the livers of animals which are subjected to antioxidant property evaluation.  相似文献   

10.
11.
Jeong MH  Jin YH  Kang EY  Jo WS  Park HT  Lee JD  Yoo YJ  Jeong SJ 《Cell research》2004,14(4):295-302
Ionizing radiation is one of the most effective tools in cancer therapy. In a previous study, we reported that protein tyrosine kinase (PTK) inhibitors modulate the radiation responses in the human chronic myelogenous leukemia (CML) cell line K562. The receptor tyrosine kinase inhibitor, genistein, delayed radiation-induced cell death, while non-recepter tyrosine kinase inhibitor, herbimycin A (HMA) enhances radiation-induced apoptosis. In this study, we focused on the modulation of radiation-induced cell death by genistein and performed PCR-select suppression subtractive hybridization (SSH) to understand its molecular mechanism. We identified human thymidine kinase 1 (TK1), which is cell cycle regulatory gene and confirmed expression of TK1 mRNA by Northern blot analysis. Expression ofTK1 mRNA and TK 1 enzymatic activity were parallel in their increase and decrease. TK1 is involved in G1-S phase transition of cell cycle progression. In cell cycle analysis, we showed that radiation induced G2 arrest in K562 cells but it was not able to sustain. However, the addition of genistein to irradiated cells sustained a prolonged G2 arrest up to 120 h. In addition, the expression of cell cycle-related proteins, cyclin A and cyclin B 1, provided the evidences of G I/S progression and G2-arrest, and their relationship with TKI in cells treated with radiation and genistein. These results suggest that the activation of TK1 may be critical to modulate the radiation-induced cell death and cell cycle progression in irradiated K562 cells.  相似文献   

12.
Adult stem cells are important cell sources in regenerative medicine, but isolating them is technically challenging. This study employed a novel strategy to generate stem-like corneal epithelial cells and promote the functional properties of these cells by coculture with embryonic stem cells. The primary corneal epithelial cells were labelled with GFP and cocultured with embryonic stem cells in a transwell or by direct cell-cell contact. The embryonic stem cells were pre-transfected with HSV-tk-puro plasmids and became sensitive to ganciclovir. After 10 days of coculture, the corneal epithelial cells were isolated by treating the cultures with ganciclovir to kill the embryonic stem cells. The expression of stem cell-associated markers (ABCG2, p63) increased whereas the differentiation mark (Keratin 3) decreased in corneal epithelial cells isolated from the cocultures as evaluated by RT-PCR and flow cytometry. Their functional properties of corneal epithelial cells, including cell adhesion, migration and proliferation, were also enhanced. These cells could regenerate a functional stratified corneal epithelial equivalent but did not form tumors. Integrin β1, phosphorylated focal adhesion kinase and Akt were significantly upregulated in corneal epithelial cells. FAK Inhibitor 14 that suppressed the expression of phosphorylated focal adhesion kinase and Akt inhibited cell adhesion, migration and proliferation. LY294002 that suppressed phosphorylated Akt but not phosphorylated focal adhesion kinase inhibited cell proliferation but had no effect on cell adhesion or migration. These findings demonstrated that the functional properties of stem-like corneal epithelial cells were enhanced by cocultured embryonic stem cells via activation of the integrin β1-FAK-PI3K/Akt signalling pathway.  相似文献   

13.
Peroxisome proliferator activated receptor (PPARγ) has been suggested as a target for anti-inflammatory therapy in chronic lung disease, including infection with Pseudomonas aeruginosa. However, the P. aeruginosa signal molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) has been reported to inhibit function of PPARs in mammalian cells. This suggests that binding of 3-oxo-C12-HSL to PPARs could increase inflammation during P. aeruginosa infection, particularly if it could compete for binding with other PPAR ligands. We investigated the ability of 3-oxo-C12-HSL to bind to a PPARγ ligand binding domain (LBD) construct, and to compete for binding with the highly active synthetic PPARγ agonist rosiglitazone. We demonstrate that 3-oxo-C12-HSL binds effectively to the PPARγ ligand binding domain, and that concentrations of 3-oxo-C12-HSL as low as 1 nM can effectively interfere with the binding of rosiglitazone to the PPARγ ligand binding domain. Because 3-oxo-C12 HSL has been demonstrated in lungs during P. aeruginosa infection, blockade of PPARγ-dependent signaling by 3-oxo-C12-HSL produced by the infecting P. aeruginosa could exacerbate infection-associated inflammation, and potentially impair the action of PPAR-activating therapy. Thus the proposed use of PPARγ agonists as anti-inflammatory therapy in lung P. aeruginosa infection may depend on their ability to counteract the effects of 3-oxo-C12-HSL.  相似文献   

14.
Tumor suppressor genes BRCA1 and BRCA2 function in a complex gene network that regulates homologous recombination and DNA double-strand break repair. Disruption of the BRCA-network through gene mutation, deletion, or RNAi-mediated silencing can sensitize cells to small molecule inhibitors of poly (ADP-ribose) polymerase (PARPi). Here, we demonstrate that BRCA-network disruption in the presence of PARPi leads to the selective induction and enhancement of interferon pathway and apoptotic gene expression in cultured tumor cells. In addition, we report PARPi cytotoxicity in BRCA1-deficient tumor cells is enhanced >10-fold when combined with interferon-γ. These findings establish a link between synthetic lethality of PARPi in BRCA-network disrupted cells and interferon pathway activation triggered by genetic instability.  相似文献   

15.
Kang J  Cheng B  Jiang L 《生理学报》2010,62(5):427-432
The aim of the present study was to investigate the role of peroxisome proliferator-activated receptor γ (PPARγ) signal transduction pathway in the expression of ATP binding cassette transporter A1 (ABCA1) and acyl-CoA:cholesterol acyltransferase 1 (ACAT1) induced by visfatin and to discuss the mechanism of foam cell formation induced by visfatin. THP-1 monocytes were induced into macrophages by 160 nmol/L phorbol myristate acetate (PMA) for 48 h, and then the macrophages were exposed to visfatin and PPARγ activator rosiglitazone, respectively. The expressions of PPARγ, ABCA1 and ACAT1 mRNA and protein were determined by RT-PCR and Western blot respectively. The contents of total cholesterol (TC) and free cholesterol (FC) were detected by enzyme fluorescence analysis. The content of cholesterol ester (CE) was calculated by the difference between TC and FC. The results showed that visfatin decreased the mRNA and protein expressions of PPARγ and ABCA1, increased the mRNA and protein expressions of ACAT1, and increased the contents of FC and CE in a concentration-dependent manner. These above effects of visfatin were inhibited by rosiglitazone in a concentration-dependent manner. These results suggest that visfatin may down-regulate the ABCA1 expression and up-regulate the ACAT1 expression via PPARγ signal transduction pathway, which decreases the outflow of FC, increases the content of CE, and then induces foam cell formation.  相似文献   

16.
To study the mechanism and specificity of anti-proliferative effect of STI571 on BCR- ABL positive cell line. BCR-ABL positive human leukemia cell line K562 and BCR- ABL negative human leukemia cell line MOTE were employed. Cells were treated with STI 571 or Adriamycin for 18 hours and their morphology and genomic DNA integrity were investigated. STI 571 induced apoptosis in K562 cells but not in MO7E cells. In contrast, adriamycin induced apoptosis in MO7E cells but not in K562 cells. STI 571 shows anti-  相似文献   

17.
18.
19.
Liver fibrosis is a necessary stage in the development of chronic liver diseases to liver cirrhosis. This study aims to investigate the anti-fibrotic effects of levo-tetrahydropalmatine (L-THP) on hepatic fibrosis in mice and cell models and its underlying mechanisms. Two mouse hepatic fibrosis models were generated in male C57 mice by intraperitoneal injection of carbon tetrachloride (CCl4) for 2 months and bile duct ligation (BDL) for 14 days. Levo-tetrahydropalmatine was administered orally at doses of 20 and 40 mg/kg. An activated LX2 cell model induced by TGF-β1 was also generated. The results showed that levo-tetrahydropalmatine alleviated liver fibrosis by inhibiting the formation of extracellular matrix (ECM) and regulating the balance between TIMP1 and MMP2 in the two mice liver fibrosis models and cell model. Levo-tetrahydropalmatine inhibited activation and autophagy of hepatic stellate cells (HSCs) by modulating PPARγ/NF-κB and TGF-β1/Smad pathway in vivo and in vitro. In conclusion, levo-tetrahydropalmatine attenuated liver fibrosis by inhibiting ECM deposition and HSCs autophagy via modulation of PPARγ/NF-κB and TGF-β1/Smad pathway.  相似文献   

20.
Deng  Jiaqiang  Li  Danting  Huang  Xiaoya  Li  Weiyao  Zhao  Fangfang  Gu  Congwei  Shen  Liuhong  Cao  Suizhong  Ren  Zhihua  Zuo  Zhicai  Deng  Junliang  Yu  Shumin 《Molecular biology reports》2022,49(9):8337-8347
Molecular Biology Reports - The immunomodulatory function of mesenchymal stem cells (MSCs) has been considered to be vital for MSC-based therapies. Many works have been devoted to excavate...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号