首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

2.
3.
4.
Proton pumping pyrophosphatase (H+-PPiase) of pea stem mitochondriaappears to be localized on the inner surface of the inner membrane.Aminohexanediphosphonate and dichloromethylenediphosphonateexert different inhibitory effects on this activity and on thatof tonoplast. Antibody raised against membrane-bound mitochondrialH+-PPiase does not react with tonoplast vesicles. Thus, plantmitochondrial H+PPiase seems to have a molecular structure differentfrom that of vacuolar H+-PPiase. (Received August 2, 1996; Accepted October 18, 1996)  相似文献   

5.

Background

Extracellular matrix (ECM) components and intracellular pH (pHi) may serve as regulators of cell migration in various cell types.

Methods

The Oris migration assay was used to assess the effect of fibronectin (FN) on cell motility. The Na+/H+ exchanger (NHE)-1 activity was evaluated by measuring pHi and [22Na+] uptake. To examine activated signaling molecules, western blot analysis and immunoprecipitation was performed.

Results

ECM components (FN, laminin, fibrinogen, and collagen type I) increased [22Na+] uptake, pHi, and cell migration. In addition, FN-induced increase of cell migration was inhibited by NHE-1 inhibitor amiloride or NHE-1-specific siRNA. FN selectively increased the mRNA and protein expression of NHE-1, but not that of NHE-2 or NHE-3. FN binds integrin β1 and subsequently stimulates caveolin-1 phosphorylation and Ca2 + influx. Then, NHE-1 is phosphorylated by RhoA and Rho kinases, and Ca2 +/calmodulin (CaM) signaling elicits complex formation with NHE-1, which is enriched in lipid raft/caveolae microdomains of the plasma membrane. Activation of NHE-1 continuously induces an increase of [22Na+] uptake and pHi. Finally, NHE-1-dependent extracellular signal-regulated kinase (ERK) 1/2 phosphorylation enhanced matrix metalloproteinase-2 (MMP-2) and filamentous-actin (F-actin) expression, partially contributing to the regulation of embryonic stem cells (ESCs) migration.

Conclusions

FN stimulated mESCs migration and proliferation through NHE-1 activation, which were mediated by lipid raft-associated caveolin-1, RhoA/ROCK, and Ca2 +/CaM signaling pathways.

General significance

The precise role of NHE in the modulation of ECM-related physiological functions such as proliferation and migration remains poorly understood. Thus, this study analyzed the relationship between FN and NHE in regulating the migration of mouse ESCs and their related signaling pathways.  相似文献   

6.
The PPi-dependent H+ transport activity of tonoplast-enrichedmembrane vesicles prepared from barley roots was greatly reducedwhen the plants were grown for 4 or 5 days with an additional3 raM KC1 in growth medium that contained only 0.1 mM CaCl2in water. To characterize the mechanism of this reduction inactivity, we attempted to treat barley roots with K+ ions, Cl-ions(or acetate), and A23187 [GenBank] (with or without Ca2+ ions), whichmight be expected to cause alkalization, acidification and mobilizationof Ca2+ ions in the cytoplasm, respectively. One-day treatmentof barley roots with K+ ions significantly decreased PPi--dependentH+ transport activity of prepared tonoplast-enriched membranevesicles, while treatment with Cl- ions or acetate significantlyincreased the activity. A similar increase in the activity alsooccurred by treatment with Ca2+ ions alone or in combinationwith A23187 [GenBank] . Determination of the PPi-hydrolyzing activity ofmembrane vesicles showed that changes in this activity by thevarious treatments were similar to those in the PPi-dependentH+ transport activity. The changes in ATP-dependent H+ transportactivity of membrane vesicles caused by these treatments weresmall. These results indicate that the in vivo treatments hadsignificant effects on the H+ transport activity of H+-PPi-ase,one of the two active vacuolar H+-pumps (H+-PPiase and H+-ATPase).In addition, these results suggest the possibility that changesin levels of cytoplasmic H+ or Ca2+ ions may be involved inmodulation of the H+ transport activity of the vacuolar H+-PPiaseduring plant growth. (Received September 14, 1992; Accepted March 1, 1993)  相似文献   

7.

Background

Glucose induces H+-ATPase activation in Saccharomyces cerevisiae. Our previous study showed that (i) S. cerevisiae plasma membrane H+-ATPase forms a complex with acetylated tubulin (AcTub), resulting in inhibition of the enzyme activity; (ii) exogenous glucose addition results in the dissociation of the complex and recovery of the enzyme activity.

Methods

We used classic biochemical and molecular biology tools in order to identify the key components in the mechanism that leads to H+-ATPase activation after glucose treatment.

Results

We demonstrate that glucose-induced dissociation of the complex is due to pH-dependent activation of a protease that hydrolyzes membrane tubulin. Biochemical analysis identified a serine protease with a kDa of 35–40 and an isoelectric point between 8 and 9. Analysis of several knockout yeast strains led to the detection of Lpx1p as the serine protease responsible of tubulin proteolysis. When lpx1Δ cells were treated with glucose, tubulin was not degraded, the AcTub/H+-ATPase complex did not undergo dissociation, and H+-ATPase activation was significantly delayed.

Conclusion

Our findings indicate that the mechanism of H+-ATPase activation by glucose involves a decrease in the cytosolic pH and consequent activation of a serine protease that hydrolyzes AcTub, accelerating the process of the AcTub/H+-ATPase complex dissociation and the activation of the enzyme.

General significance

Our data sheds light into the mechanism by which acetylated tubulin dissociates from the yeast H+-ATPase, identifying a degradative step that remained unknown. This finding also proposes an indirect way to pharmacologically regulate yeast H+-ATPase activity and open the question about mechanistic similarities with other higher eukaryotes.  相似文献   

8.
The co-ordinated action of the two proton-transporting enzymes at the tonoplast of the CAM plants. daigremontiana, viz. the ATPase and the PPiase, was studied by measuring fluorescent dye quenching. The initial rates of ATP and PPi-dependent H+ transport into tonoplast vesicles were additive, i.e. the sum of the rates obtained with each substrate alone was in the range obtained with both substrates added together at the same time. Conversely, the activities of the two H+ pumps were non-additive in establishing the steady-state level, indicating that the final steady state was under thermodynamic control of a maximal attainable proton gradient. The initial rates of ATP-dependent H+ transport were stimulated enormously if ATP was added a few minutes after pre-energization of the vesicles with PPi. This stimulation was observed only when the PPiase was active. A similar effect was not found for PPi-dependent H+ transport after pre-energization with ATP. Hence, a PPiase-activated ATP-dependent H+ transport can be distinguished from the basic ATP- and the basic PPi-dependent H+ transport. In parallel a PPi-dependent stimulation of ATP hydrolysis in the absence of ionophores was measured, which can only be attributed to the activity of the PPiase. PPiase-activated ATP-dependent H+ transport depends on the presence of permeant anions. It shows properties of both H+ transport activities, i.e. the chloride and malate stimulation and the DCCD inhibition of the ATP-dependent H+ transport activity, the nitrate stimulation and the KF inhibition of the PPi-dependent H+ transport activity. Only MgPPi and MgATP were effective as the respective substrates. The PPiase-activated ATP-dependent H+ transport had a half life of about 5–9 minutes. It is concluded that the PPiase may play an important role in kinetic regulation of the ATPase, and implications for CAM metabolism are discussed.  相似文献   

9.
We investigated the effects of in vivo treatment (1 day) ofbarley roots with abscisic acid (ABA) and/or a cytokinin (6-benzyladenine;BA) on the ATP- and PPi-dependent H+ transport activities oftonoplast-enriched membrane vesicles prepared from the roots.Treatment with ABA significantly increased the two H+ transportactivities. By contrast, treatment with BA significantly decreasedPPi-dependent H+ transport activity, while the change in ATP-dependentH+ transport activity was small. Increases in the two H+ transportactivities caused by treatment with ABA were suppressed duringtreatment with ABA and BA. Changes in the NO-inhibitableATPase activity and the Na+-inhibitable PPiase activity of membranevesicles after treatment of roots with phytohormone(s) (ABA,BA, ABA + BA) were similar to changes in the ATP- and PPi dependentH+ transport activities of the membrane vesicles, respectively.Immunoblot analysis with antibodies raised against the functionalcatalytic subunits of the vacuolar H+ pumps (H+- ATPase andH+-PPiase) of mung bean revealed that only the level of thefunctional catalytic subunit of the H+-PPiase of the membranevesicles was significantly increased by treatment with ABA aloneand in combination with BA. These results suggest that treatmentwith ABA has a stimulatory effect on the activities of the twoH+ pumps of the vacuolar membrane of barley roots, with increasein the level of the catalytic subunit of the H+-PPiase, andthat treatment with BA has an inhibitory effect on the two H+pump activities of the vacuolar membrane without changes inthe levels of the catalytic subunits of either H+ pump, withthe limitation that treatment with BA has an inhibitory effectonly when the activity of the H+-ATPase has been increased bytreatment with ABA. 3Present address: Department of Biology, Faculty of Science,Hirosaki University, Hirosaki, 036 Japan  相似文献   

10.

Background

One of the central debates in membrane bioenergetics is whether proton-dependent energy coupling mechanisms are mediated exclusively by protonic transmembrane electrochemical potentials, as delocalized pmf, ΔµH+, or by more localized membrane surface proton pathways, as interfacial pmf, ΔµHS.

Methods

We measure ?pHS in rat liver mitoplasts energized by respiration or ATP hydrolysis by inserting pH sensitive fluorescein-phosphatidyl-ethanolamine(F-PE) into mitoplast surface.

Results

In the presence of rotenone and Ap5A, succinate oxidation induces a bi-phasic interfacial protonation on the mitoplast membranes, a fast phase followed by a slow one, and an interfacial pH decrease of 0.5 to 0.9 pH units of mitoplast with no simultaneous pH changes in the bulk. Antimycin A, other inhibitors or uncouplers of mitochondrial respiration prevent the decrease of mitoplast ?pHS, supporting that ΔµHS is dependent and controlled by energization of mitoplast membranes. A quantitative assay of ATP synthesis coupled with ?pHS of mitoplasts oxidizing succinate with malonate titration shows a parallel correlation between ATP synthesis, State 4 respiration and ?pHS, but not with ?ΨE.

General Significance

Our data substantiate ?pHS as the primary energy source of pmf for mitochondrial ATP synthesis. Evidence and discussion concerning the relative importance and interplay of ?pHS and ?ΨE in mitochondrial bioenergetics are also presented.  相似文献   

11.
Flux into the glycolytic pathway of most cells is controlled via allosteric regulation of the irreversible, committing step catalyzed by ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11), the key enzyme of glycolysis. In some organisms, the step is catalyzed by PPi-dependent PFK (PPi-PFK; EC 2.7.1.90), which uses PPi instead of ATP as the phosphoryl donor, conserving ATP and rendering the reaction reversible under physiological conditions. We have determined the enzymic properties of PPi-PFK from the anaerobic, hyperthermophilic archaeon Thermoproteus tenax, purified the enzyme to homogeneity, and sequenced the gene. The ∼100-kDa PPi-PFK from T. tenax consists of 37-kDa subunits; is not regulated by classical effectors of ATP-PFKs such as ATP, ADP, fructose 2,6-bisphosphate, or metabolic intermediates; and shares 20 to 50% sequence identity with known PFK enzymes. Phylogenetic analyses of biochemically characterized PFKs grouped the enzymes into three monophyletic clusters: PFK group I represents only classical ATP-PFKs from Bacteria and Eucarya; PFK group II contains only PPi-PFKs from the genus Propionibacterium, plants, and amitochondriate protists; whereas group III consists of PFKs with either cosubstrate specificity, i.e., the PPi-dependent enzymes from T. tenax and Amycolatopsis methanolica and the ATP-PFK from Streptomyces coelicolor. Comparative analyses of the pattern of conserved active-site residues strongly suggest that the group III PFKs originally bound PPi as a cosubstrate.As first discovered in Entamoeba histolytica (27), in some members of all three domains of life (Bacteria, Eucarya, and Archaea), the first committing step of glycolysis, the phosphorylation of fructose 6-phosphate (Fru 6-P), is catalyzed not by common ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11) but by an enzyme which uses PPi as a phosphoryl donor (PPi-PFK; EC 2.7.1.90) (2234). The only archaeal PPi-PFK described so far is the enzyme of Thermoproteus tenax, a hyperthermophilic, anaerobic archaeon which is able to grow chemolithotrophically with CO2, H2, and S0, as well as chemo-organothrophically in the presence of S0 and carbohydrates (11, 41). As shown by enzymatic and in vivo studies (pulse-labeling experiments), T. tenax metabolizes glucose mainly via a variation of the Embden-Meyerhof-Parnas pathway distinguished by the reversible PPi-PFK reaction (34, 35).In contrast to the virtually irreversible reaction catalyzed by the ATP-PFK, the phosphorylation by PPi is reversible. Thus, for thermodynamic reasons, the PPi-PFK should be able to replace the enzymes of both the forward (ATP-PFK) and reverse (fructose-bisphosphatase [FBPase]) reactions. Consistent with the presumed bivalent function of the PPi-dependent enzyme, in prokaryotes and parasitic protists which possess PPi-PFK, little, if any, ATP-PFK or FBPase activity is present. Strikingly, the PPi-PFKs of these organisms proved to be nonallosteric, suggesting that the control of the carbon flux through the pathway is no longer exerted by the PFK in these organisms. A considerably different situation has been described for higher plants and the green alga Euglena gracilis, showing comparable ATP-PFK, FBPase, and PPi-PFK activities and allosteric regulation of their PPi-dependent enzyme by fructose 2,6-bisphosphate (12, 22). However, in most cases it is not obvious which physiological role PPi-PFK performs: reversible catalysis of glycolysis/gluconeogenesis, increase of the energy yield of glycolysis under certain conditions in which the energy charge is low, or ATP-conservation in obligately fermentative organisms (22).Closely related to questions concerning the biological function of PPi-PFKs is the matter of their evolutionary origin: are these enzymes the result of a secondary adaptation from ATP-PFKs, or do they represent an original phenotype, as suggested by their specificity for PPi, which is thought to be an ancient source of metabolic energy (9, 18, 19, 26). Indicated by sequence similarity (3, 4), all known PPi- and ATP-PFKs are homologous and therefore originated from a common ancestral root. From more recent studies of Streptomyces coelicolor PFK (4), the previous assumption of a single event which separated PPi- and ATP-PFKs had to be revised in favor of a multiple differentiation, leaving open, however, the question of the primary or secondary origin of PPi-PFK.Understanding of PFK evolution has been impaired by a lack of knowledge concerning archaeal PFK, although the existence of ATP-PFK (31), PPi-PFK (34), and also ADP-dependent PFK (16, 31) in Archaea has been described. To address the evolution of PFK, we describe the PPi-PFK from T. tenax and compare its sequence and structure to those of known bacterial and eucaryal PFK enzymes.  相似文献   

12.
ATP-dependent and PPi-dependent H+-transport systems of thetonoplast were characterized in plasmalemma-permeabilized Nitellacells, where direct access to the protoplasmic surface of thetonoplast was possible. Since H+ transport across the tonoplastcan be measured in situ, the identity of the membrane responsiblefor H+ pumping is unequivocal. H+ transport was evaluated bythe accumulation of neutral red. While both transport systemswere obligately dependent on Mg2+, the two transport systemsshowed completely different sensitivity to NO3 and K+,suggesting the presence of two types of H+-pumps in Nitellatonoplast. NO3 applied to the protoplasmic surface, completelyand reversibly inhibited ATP-dependent transport but had noeffect on PPi-dependent transport. By contrast, NO3 appliedinto the vacuole by the vacuolar perfusion technique did notinhibit ATP-dependent or PPi-dependent H+ transport. Replacementof K+ with the organic cation, BTP, inhibited PPi-dependenttransport but not the ATP-dependent one, indicating that PPi-dependenttransport is K+ dependent. The sensitivities of the H+ transportsystems found in the tonoplast of Nitella are quite similarto those of higher plant tonoplasts. 1 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Tokyo 113, Japan. (Received February 21, 1987; Accepted May 27, 1987)  相似文献   

13.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   

14.
15.
Large-scale preparation of highly purified tonoplast from cucumber (Cucumis sativus L.) roots was obtained after centrifugation of microsome pellet (10,000 – 80,000 g) on discontinuous sucrose density gradient (20, 28, 32 and 42 %). Lack of PEP carboxylase (cytosol marker) and cytochrome c oxidase (mitochondrial marker) together with a slight activity of VO4-ATPase (plasma membrane marker) and NADH-cytochrome c reductase (ER marker) in tonoplast preparation confirmed its high purity. Using latency of nitrate-inhibited ATPase and H+ pumping as criteria it was established that the majority of tonoplast vesicles were sealed and oriented right(cytoplasmic)-side-out. Strong acidification of the interior of vesicles observed at the presence of both, ATP and PPi, confirmed that obtained tonoplast contains two classes of proton pumps: V-ATPase and H+PPiase. To examine and characterise of proton-transport systems in tonoplast, the effect of various inhibitors on H+ pumping and hydrolytic activities of ATPase and PPiase were measured. ATP-dependent activities (H+ flux and ATP hydrolysis) were specifically decreased by nitrate and bafilomycin A1, whereas the PPiase activities were reduced in the presence of fluoride and Na+ ions. Both enzymes showed a similar sensitivity to DCCD and DES. The results of experiments with KCl and NaCl suggested that the vacuolar ATPase was stimulated by Cl, whereas the vacuolar Ppiase requires K+ ions for its activity.  相似文献   

16.
17.

Background

Reactive oxygen species (ROS) are among the main determinants of cellular damage during ischemia and reperfusion. There is also ample evidence that mitochondrial ROS production is involved in signaling during ischemic and pharmacological preconditioning. In a previous study we analyzed the mitochondrial effects of the efficient preconditioning drug diazoxide and found that it increased the mitochondrial oxidation of the ROS-sensitive fluorescent dye 2′,7′-dichlorodihydrofluorescein (H2DCF) but had no direct impact on the H2O2 production of submitochondrial particles (SMP) or intact rat heart mitochondria (RHM).

Methods

H2O2 generation of bovine SMP and tightly coupled RHM was monitored under different conditions using the amplex red/horseradish peroxidase assay in response to diazoxide and a number of inhibitors.

Results

We show that diazoxide reduces ROS production by mitochondrial complex I under conditions of reverse electron transfer in tightly coupled RHM, but stimulates mitochondrial ROS production at the Qo site of complex III under conditions of oxidant-induced reduction; this stimulation is greatly enhanced by uncoupling. These opposing effects can both be explained by inhibition of complex II by diazoxide. 5-Hydroxydecanoate had no effect, and the results were essentially identical in the presence of Na+ or K+ excluding a role for putative mitochondrial KATP-channels.

General significance

A straightforward rationale is presented to mechanistically explain the ambivalent effects of diazoxide reported in the literature. Depending on the metabolic state and the membrane potential of mitochondria, diazoxide-mediated inhibition of complex II promotes transient generation of signaling ROS at complex III (during preconditioning) or attenuates the production of deleterious ROS at complex I (during ischemia and reperfusion).  相似文献   

18.
W. Pfeiffer  A. Hager 《Planta》1993,191(3):377-385
The primary or secondary energized transport of Ca2+, Mg2+ and H+ into tonoplast membrane vesicles from roots of Zea mays L. seedlings was studied photometrically by using the fluorescent Ca2+ indicator Indo 1 and the pH indicator neutral red. The localization of an ATP-dependent, vanadate-sensitive Ca2+ pump on tonoplast-type vesicles was demonstrated by the co-migration of the Ca2+-pumping and tonoplast H+-pyrophosphatase (PPiase) activity on continuous sucrose density gradients. In ER-membrane fractions, only a low Ca2+-pumping activity could be detected. The ATP-dependent Ca2+ uptake into tonoplast vesicles (using Ca2+ concentrations from 0.8–1 μM) was completely inhibited by the Ca2+ ionophore ionomycin (1 μM) whereas the protonophore nigericin (1 μM) which eliminates ATP-dependent intravesicular H+ accumulation had no effect. Vanadate (IC50 = 43 μM) and diethylstilbesterol (IC50 = 5.2 μM) were potent inhibitors of this type of Ca2+ transport. The nucleotides GTP, UTP, ITP, and ADP gave 27%–50% of the ATP-dependent activity (K m = 0.41 mM). From these results, it was suggested that this ATP-dependent high-affinity Ca2+ transport mechanism is the only functioning Ca2+ transporter of the tonoplast under in-vivo conditions i.e. under the low cytosolic Ca2+ concentration. In contrast, the secondary energized Ca2+-transport mechanism of the tonoplast, the low-affinity Ca2+/H+-antiporter, which was reported to allow the uptake of Ca2+ in exchange for H+, functions chiefly as an Mg2+ transporter under physiological conditions because cytosolic Mg2+ is several orders of magnitude higher than the Ca2+ concentration. This conclusion was deduced from experiments showing that Mg2+ ions in a concentration range of 0.01 to 1 mM triggered a fast efflux of H+ from acid-loaded vesicles. Furthermore, the proton-pumping activity of the tonoplast H+-ATPase and H+-PPiase was found to be influenced by Ca2+ differently from and independently of the Mg2+ concentration. Calcium was a strong inhibitor for the H+-PPiase (IC50 = 18 μM, Hill coefficient nH = 1.7) but a weak one for the H+-ATPase (IC50 = 330 μM, nH = 1). From these results it is suggested that at the tonoplast membrane a functional interaction exists between (i) the Ca2+-and Mg2+-regulated H+-PPiase, (ii) the newly described high-affinity Ca2+-AT-Pase, (iii) the low-affinity Mg2+(Ca2+)/H+-antiporter and (iv) the H2+-ATPase.  相似文献   

19.

Background

DNase antibodies can play an important role in the pathogenesis of different autoimmune pathologies.

Methods

An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with systemic lupus erythematosus (SLE) was used. The small pools of phage particles displaying DNA binding light chains with different for DNA were isolated by affinity chromatography on DNA-cellulose and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 28 kDa). Forty-five of 451 individual colonies were randomly chosen for a study of MLChs with DNase activity. The clones were expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography followed by gel filtration, and studied in detail.

Results

Fifteen of 45 MLChs efficiently hydrolyzed DNA, and fourteen of them demonstrated various optimal concentrations of KCl or NaCl in a 1–100 mM range and showed one or two pH optima in a 4.8–9.1 range. All MLChs were dependent on divalent metal cations: the ratio of relative DNase activity in the presence of Mn2 +, Ca2 +, Mg2 +, Ni2 +, Zn2 +, Cu2 +, and Co2 + was individual for each MLCh preparation. Fourteen MLChs demonstrated a comparable affinity for DNA (260–320 nM), but different kcat values (0.02–0.7 min− 1).

Conclusions

These observations suggest an extreme diversity of DNase abzymes from SLE patients.

General significance

SLE light chain repertoire can serve as a source of new types of DNases.  相似文献   

20.

Background

Warfarin directly inhibits vitamin K 2,3-epoxide reductase (VKOR) enzymes. Since the early 1970s, warfarin inhibition of vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), an essential enzyme for proper function of blood coagulation in higher vertebrates, has been studied using an in vitro dithiothreitol (DTT) driven enzymatic assay. However, various studies based on this assay have reported warfarin dose–response data, usually summarized as half-maximal inhibitory concentration (IC50), that vary over orders of magnitude and reflect the broad range of conditions used to obtain VKOR assay data.

Methods

We standardized the implementation of the DTT-driven VKOR activity assay to measure enzymatic Michaelis constants (Km) and warfarin IC50 for human VKORC1. A data transformation is defined, based on the previously confirmed bi bi ping-pong mechanism for VKORC1, that relates assay condition-dependent IC50 to condition-independent Ki.

Results

Determination of the warfarin Ki specifically depends on measuring both substrate concentrations, both Michaelis constants for the VKORC1 enzyme, and pH in the assay.

Conclusion

The Ki is not equal to the IC50 value directly measured using the DTT-driven VKOR assay.

General significance

In contrast to warfarin IC50 values determined in previous studies, warfarin inhibition expressed as Ki can now be compared between studies, even when the specific DTT-driven VKOR assay conditions differ. This implies that warfarin inhibition reported for wild-type and variant VKORC1 enzymes from previous reports should be reassessed and new determinations of Ki are required to accurately report and compare in vitro warfarin inhibition results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号