首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Cancer complexity constantly challenges the way that clinicians manage breast cancer therapy. Tumor heterogeneity and intratumoral stroma characteristics allow cells with different phenotypes and deregulated apoptotic, proliferative and migration abilities to co-exist contributing to a disappointing therapeutic response. While new approaches are being associated with conventional chemotherapy, such as hormonal therapy or target monoclonal antibodies, recurrence and metastasization are still observed. Membrane transporters are the cell's first line of contact with anticancer drugs having a major role in multidrug resistance events. This structural-based activity enables the cell to be drug-resistant by decreasing drug intracellular concentration through an efflux-transport mechanism, mainly associated with overexpression of ATP-binding cassette (ABC) proteins. This review focuses on some of the important structural and biological properties of the malignant cell and tumor microenvironment, addressing the role of the membrane ABC transporters in therapeutic outcomes, and highlighting related molecular pathways that may represent meaningful target therapies.  相似文献   

2.
Hu DE  Brindle KM 《FEBS letters》2005,579(13):2833-2841
Induction of apoptosis in a lymphoma cell line using immune cell-conditioned medium, etoposide or an nitric oxide (NO) donor, resulted in the production of reactive oxygen species (ROS). Agents that inhibited NO production or scavenged ROS or species formed by reaction of NO with ROS, protected the cells from apoptosis. These data support the suggestion that immune rejection of an immunogenic derivative of this lymphoma in vivo involves the induced synthesis of both NO and ROS by the tumour cells.  相似文献   

3.
4.
Our aim in this study was to investigate the effect of moderate acute alcohol administration on cysteine protease mediated neuronal apoptosis and nitric oxide production in the traumatic brain injury. A total of 29 adult Sprague–Dawley male rats weighing 250–300 g were used. The rats were allocated into four groups. The first group was the control (sham-operated) group in which only a craniotomy was performed, the others were alcohol, trauma and trauma + alcohol groups. Caspase-3 enzyme activity in the trauma group increased significantly in comparison with the control group. The alcohol given group showed a decreased caspase-3 enzyme activity compared to the trauma group. The level of caspase-3 enzyme activity in the alcohol + trauma group decreased in comparison to the trauma group. SF/FEL ratio of cathepsin-L enzyme activity in the trauma group was significantly higher than in the control group. Our results indicate that moderate alcohol consumption may have protective effects on apoptotic cell death after traumatic brain injury. Protective effects of moderate ethanol consumption might be related to inhibition of lysosomal protease release and nitric oxide production.  相似文献   

5.
Leishmaniasis is a neglected tropical disease that affects about 350 million individuals worldwide. The protozoan parasite has a relatively simple life cycle with two principal stages: the flagellated mobile promastigote living in the gut of the sandfly vector and the intracellular amastigote within phagolysosomal vesicles of the vertebrate host macrophage. This review presents a state-of-the-art overview of the redox biology at the parasite-macrophage interface. Although Leishmania species are susceptible in vitro to exogenous superoxide radical, hydrogen peroxide, nitric oxide, and peroxynitrite, they manage to survive the endogenous oxidative burst during phagocytosis and the subsequent elevated nitric oxide production in the macrophage. The parasite adopts various defense mechanisms to cope with oxidative stress: the lipophosphoglycan membrane decreases superoxide radical production by inhibiting NADPH oxidase assembly and the parasite also protects itself by expressing antioxidant enzymes and proteins. Some of these enzymes could be considered potential drug targets because they are not expressed in mammals. In respect to antileishmanial therapy, the effects of current drugs on parasite-macrophage redox biology and its involvement in the development of drug resistance and treatment failure are presented.  相似文献   

6.
7.
The antiapoptotic, antioxidant, proliferative, and angiogenic effects of metallothionein (MT)-I+II has resulted in increased focus on their role in oncogenesis, tumor progression, therapy response, and patient prognosis. Studies have reported increased expression of MT-I+II mRNA and protein in various human cancers; such as breast, kidney, lung, nasopharynx, ovary, prostate, salivary gland, testes, urinary bladder, cervical, endometrial, skin carcinoma, melanoma, acute lymphoblastic leukemia (ALL), and pancreatic cancers, where MT-I+II expression is sometimes correlated to higher tumor grade/stage, chemotherapy/radiation resistance, and poor prognosis. However, MT-I+II are downregulated in other types of tumors (e.g. hepatocellular, gastric, colorectal, central nervous system (CNS), and thyroid cancers) where MT-I+II is either inversely correlated or unrelated to mortality. Large discrepancies exist between different tumor types, and no distinct and reliable association exists between MT-I+II expression in tumor tissues and prognosis and therapy resistance. Furthermore, a parallel has been drawn between MT-I+II expression as a potential marker for prognosis, and MT-I+II's role as oncogenic factors, without any direct evidence supporting such a parallel. This review aims at discussing the role of MT-I+II both as a prognostic marker for survival and therapy response, as well as for the hypothesized role of MT-I+II as causal oncogenes.  相似文献   

8.
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.  相似文献   

9.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号