首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The aquaporins (AQPs) are a family of 13 small hydrophobic integral transmembrane water channel proteins involved in transcellular and transepithelial water movement, transport of fluid and cell migration.

Scope of the review

This review article summarizes our knowledge concerning the involvement of AQPs in tumor growth, angiogenesis and metastatic process.

Major conclusions

Tumor cells types express AQPs and a positive correlation exists between histological tumor grade and the AQP expression. Moreover, AQPs are involved also in tumor edema formation and angiogenesis in several solid and hematological tumors.

General significance

AQPs inhibition in endothelial and tumor cells might limit tumor growth and spread, suggesting a potential therapeutic use in the treatment of tumors. This article is part of a Special Issue entitled Aquaporins.  相似文献   

2.

Background

Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin.

Scope of review

This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies.

Major conclusions

Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics.

General significance

In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.  相似文献   

3.

Background

The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.

Scope of review

The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.

Major conclusions

Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.

General significance

Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.  相似文献   

4.

Background

The presence of water channel proteins, aquaporins (AQPs), in the brain led to intense research in understanding the underlying roles of each of them under normal conditions and pathological conditions.

Scope of review

In this review, we summarize some of the recent knowledge on the 3 main AQPs (AQP1, AQP4 and AQP9), with a special focus on AQP4, the most abundant AQP in the central nervous system.

Major conclusions

AQP4 was most studied in several brain pathological conditions ranging from acute brain injuries (stroke, traumatic brain injury) to the chronic brain disease with autoimmune neurodegenerative diseases. To date, no specific therapeutic agents have been developed to either inhibit or enhance water flux through these channels. However, experimental results strongly underline the importance of this topic for future investigation. Early inhibition of water channels may have positive effects in prevention of edema formation in brain injuries but at later time points during the course of a disease, AQP is critical for clearance of water from the brain into blood vessels.

General significance

Thus, AQPs, and in particular AQP4, have important roles both in the formation and resolution of edema after brain injury. The dual, complex function of these water channel proteins makes them an excellent therapeutic target. This article is part of a Special Issue entitled Aquaporins.  相似文献   

5.

Background

The mammalian two superaquaporins, AQP11 and AQP12, are present inside the cell and their null phenotypes in mice suggest their unusual functions.

Scope of review

The surveyed literature on these superaquaporins and our unpublished data has been incorporated to speculate their roles.

Major conclusions

AQP11 and AQP12 have unique NPA boxes with a signature cysteine residue. Although some water permeability of AQP11 was demonstrated in liposomes and cultured cells, its permeability to glycerol is unknown. The function of AQP12 still remains to be clarified. AQP11 null mice develop polycystic kidneys following large intracellular vacuoles in the proximal tubule, which may be caused by ER stress or vesicle fusion failure. The role of AQP11 in the kidney and liver seems to alleviate the tissue damage and facilitate the recovery. Its expression in the sperm, thymus and brain suggests its potential roles in these organs in spite of the apparently normal null phenotype. Although AQP12 null mice appear normal, they suffer from severe pancreatitis, suggesting its role in the fusion of zymogen granules.

General significance

As many issues are unsolved, the clarification of the function and roles of the superaquaporin may lead to the identification of new roles of AQPs. This article is part of a Special Issue entitled Aquaporins.  相似文献   

6.

Background

Insight into protein–protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed.

Scope of review

We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5.

Major conclusions

The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level.

General significance

What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.  相似文献   

7.
8.

Background

Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids.

Scope of review

This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells.

Major conclusions

As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants.

General significance

The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.  相似文献   

9.

Purpose

The aquaporin (AQP) family consists of a number of small integral membrane proteins that transport water and glycerol. AQPs are critical for trans-epithelial fluid transport. Recent reports demonstrated that AQPs, particularly AQP1 and AQP5, are expressed in high grade tumor cells of a variety of tissue origins, and that AQPs are involved in cell migration and metastasis. Based on this background, we examined whether AQP3, another important member of the AQP family, could facilitate cell migration in human breast cancers.

Methods

Potential role of AQP3 was examined using two representative breast cancer cell lines (MDA-MB-231 and Bcap-37). Briefly, AQP3 expression was inhibited with a lentivirus construct that stably expressed shRNA against the AQP3 mRNA. AQP3 expression inhibition was verified with Western blot. Cell migration was examined using a wound scratch assay in the presence of fibroblast growth factor-2 (FGF-2). In additional experiments, AQP3 was inhibited by CuSO4. Fibroblast growth factor receptor (FGFR) kinase inhibitor PD173074, PI3K inhibitor LY294002, and MEK1/2 inhibitor PD98059 were used to dissect the molecular mechanism of FGF-2 induced AQP3 expression.

Results

FGF-2 treatment increased AQP3 expression and induced cell migration in a dose dependent manner. Silencing AQP3 expression by a lentiviral shRNA inhibited FGF-2 induced cell migration. CuSO4, a water transport inhibitor selective for AQP3, also suppressed FGF-2-induced cell migration. The FGFR kinase inhibitor PD173074, significantly inhibited FGF-2-induced AQP3 expression and cell migration. The PI3K inhibitor LY294002 and MEK1/2 inhibitor PD98059 inhibited, but not fully blocked, FGF-2-induced AQP3 expression and cell migration.

Conclusions

AQP3 is required for FGF-2-induced cell migration in cultured human breast cancer cells. Our findings also suggest the importance of FGFR-PI3K and FGFR-ERK signaling in FGF-2-induced AQP3 expression. In summary, our findings suggest a novel function of AQP3 in cell migration and metastasis of breast cancers.  相似文献   

10.
The regulation of platelet volume significantly affects its function. Because water is the major molecule in cells and its active transport via water channels called aquaporins (AQPs) have been implicated in cellular and organelle volume regulation, the presence of water channels in platelets and their potential role in platelet volume regulation was investigated. G-protein-mediated AQP regulation in secretory vesicle swelling has previously been reported in neurons and in pancreatic acinar cells. Mercuric chloride has been demonstrated to inhibit most AQPs except AQP6, which is stimulated by the compound. Exposure of platelets to HgCl(2)-induced swelling in a dose-dependent manner, suggesting the presence of AQP6 in platelets. Immunoblot analysis of platelet protein confirmed the presence of AQP6, and also of G(αo), G(αi-1) and G(αi-3) proteins. Results from this study demonstrate for the first time that in platelets AQP6 is involved in cell volume regulation via a G-protein-mediated pathway.  相似文献   

11.

Background and Goals

Mechanical ventilation (MV) can induce or worsen pulmonary oedema. Aquaporins (AQPs) facilitate the selective and rapid bi-directional movement of water. Their role in the development and resolution of pulmonary oedema is controversial. Our objectives are to determine if prolonged MV causes lung oedema and changes in the expression of AQP 1 and AQP 5 in rats.

Methods

25 male Wistar rats were subjected to MV with a tidal volume of 10 ml/kg, during 2 hours (n = 12) and 4 hours (n = 13). Degree of oedema was compared with a group of non-ventilated rats (n = 5). The expression of AQP 1 and AQP 5 were determined by western immunoblotting, measuring the amount of mRNA (previously amplified by RT-PCR) and immunohistochemical staining of AQPs 1 and 5 in lung samples from all groups.

Results

Lung oedema and alveolar-capillary membrane permeability did not change during MV. AQP-5 steady state levels in the western blot were increased (p<0.01) at 2 h and 4 h of MV. But in AQP-1 expression these differences were not found. However, the amount of mRNA for AQP-1 was increased at 2 h and 4 h of MV; and for AQP 5 at 4 h of MV. These findings were corroborated by representative immunohistochemical lung samples.

Conclusion

In lungs from rats ventilated with a low tidal volume the expression of AQP 5 increases gradually with MV duration, but does not cause pulmonary oedema or changes in lung permeability. AQPs may have a protective effect against the oedema induced by MV.  相似文献   

12.

Background

Investigate the impact of natural N- or C-terminal post-translational truncations of lens mature fiber cell Aquaporin 0 (AQP0) on water permeability (Pw) and cell-to-cell adhesion (CTCA) functions.

Methods

The following deletions/truncations were created by site-directed mutagenesis (designations in parentheses): Amino acid residues (AA) 2–6 (AQP0-N-del-2-6), AA235–263 (AQP0-1-234), AA239–263 (AQP0-1-238), AA244–263 (AQP0-1-243), AA247–263 (AQP0-1-246), AA250–263 (AQP0-1-249) and AA260–263 (AQP0-1-259). Protein expression was studied using immunostaining, fluorescent tags and organelle-specific markers. Pw was tested by expressing the respective complementary ribonucleic acid (cRNA) in Xenopus oocytes and conducting osmotic swelling assay. CTCA was assessed by transfecting intact or mutant AQP0 into adhesion-deficient L-cells and performing cell aggregation and adhesion assays.

Results

AQP0-1-234 and AQP0-1-238 did not traffic to the plasma membrane. Trafficking of AQP0-N-del-2-6 and AQP0-1-243 was reduced causing decreased membrane Pw and CTCA. AQP0-1-246, AQP0-1-249 and AQP0-1-259 mutants trafficked properly and functioned normally. Pw and CTCA functions of the mutants were directly proportional to the respective amount of AQP0 expressed at the plasma membrane and remained comparable to those of intact AQP0 (AQP0-1-263).

Conclusions

Post-translational truncation of N- or C-terminal end amino acids does not alter the basal water permeability of AQP0 or its adhesive functions. AQP0 may play a role in adjusting the refractive index to prevent spherical aberration in the constantly growing lens.

General significance

Similar studies can be extended to other lens proteins which undergo post-translational truncations to find out how they assist the lens to maintain transparency and homeostasis for proper focusing of objects on to the retina.  相似文献   

13.

Aim

Aquaporin-4(AQP4) expression in the brain with relation to edema formation following focal cerebral ischemia was investigated. Studies have shown that brain edema is one of the significant factors in worsening stroke outcomes. While many mechanisms may aggravate brain injury, one such potential system may involve AQP4 up regulation in stroke patients that could result in increased edema formation. Post administration of melatonin following ischemic stroke reduces AQP4 mediated brain edema and confers neuroprotection.

Materials and methods

An in-silico approach was undertaken to confirm effective melatonin-AQP4 binding. Rats were treated with 5 mg/kg, i.p. melatonin or placebo at 30 min prior, 60 min post and 120 min post 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Rats were evaluated for battery of neurological and motor function tests just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, apoptosis study and western blot experiments.

Key findings

Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde (MDA) were also found to be significantly reduced in ischemic brain regions in treated animals. Melatonin potentiated intrinsic antioxidant status, inhibited acid mediated rise in intracellular calcium levels, decreased apoptotic cell death and also markedly inhibited protein kinase C (PKC) influenced AQP4 expression in the cerebral cortex and dorsal striatum.

Significance

Melatonin confers neuroprotection by protein kinase C mediated AQP4 inhibition in ischemic stroke.  相似文献   

14.
Glutathione peroxidases   总被引:1,自引:0,他引:1  

Background

With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1–GPx8) so far identified.

Scope of the review

Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity.

Major conclusions

GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation.

General significance

Collectively, selenium-containing GPxs (GPx1–4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

15.
16.

Aim

Recent studies have emphasized the importance of the extracellular microenvironment in modulating cell growth, motility, and signalling. In this study we have evaluated the ability of a fibroblast derived-extracellular matrix (fd-ECM) to regulate type I collagen synthesis and degradation in fibroblasts.

Main methods

Fibroblasts were plated on plastic (control) or on fd-ECM and type I collagen synthesis and degradation was evaluated. MTT, western blotting, real time PCR, zymographic analysis and inhibitor assays were utilised to investigate the molecular mechanism of type I collagen regulation by the fd-ECM.

Key findings

Fibroblasts plated on fd-ECM showed significant downregulation in the production of type I collagen and COL1A2 messenger ribonucleic acid (mRNA) whilst COL1A1 mRNA remained unchanged. Cells grown on fd-ECM exhibited increased matrix metalloproteases (MMPs) and their corresponding mRNAs. The use of transforming growth factor β (TGF-β) and MMP inhibitors showed that the excess COL1A1 polypeptide chains were degraded by the combined action of MMP-1, MMP-2, MMP-9 and cathepsins.

Significance

These results show the crucial role played by proteases in regulating extracellular matrix protein levels in the feedback regulation of connective tissue gene expression.  相似文献   

17.
18.
19.

Background

Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes.

Scope of review

Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions.

Major conclusions

The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems.

General significance

Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号