首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The past four decades has witnessed a consolidation of the original observations made in the 1970s that dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) have an immunological basis. Following reinfection with a dengue virus of different serotype, severe disease is linked to high levels of antibody-enhanced viral replication early in illness which is followed by a cascade of memory T-cell activation and a 'storm' of inflammatory cytokines and other chemical mediators. These compounds are released mainly from T cells, monocytes/macrophages and endothelial cells, and ultimately cause an increase in vascular permeability. The consolidation of the evidence has been largely due to several important prospective sero-epidemiological studies in areas endemic for DHF/DSS, which have shown that risk of severe disease is significantly higher in secondary dengue infections. These advances have underscored the fact that DHF/DSS pathogenesis is a complex, multifactorial process involving cocirculation of various dengue virus serotypes and the interplay of host and viral factors that influence disease severity. The continued search to define risk factors in susceptible populations must be combined with the new techniques of molecular virology and innovative approaches in vaccine design to achieve the ultimate objective of developing a safe and effective vaccine.  相似文献   

2.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

3.
Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It has been suggested that patients with an elevated level of the free soluble form of dengue virus (DV) nonstructural protein 1 (sNS1) are at risk of developing DHF. To understand the role of sNS1 in blood, we searched for the host molecule with which NS1 interacts in human plasma by affinity purification using a GST-fused NS1. Complement inhibitory factor clusterin (Clu), which naturally inhibits the formation of terminal complement complex (TCC), was identified by mass spectrometry. A recombinant sNS1 produced from 293T cells and sNS1 from DV-infected Vero cells interacted with human Clu. Since an activated complement system reportedly causes vascular leakage, the interaction between sNS1 and Clu may contribute to the progression of DHF.  相似文献   

4.
Vascular endothelium: the battlefield of dengue viruses   总被引:1,自引:0,他引:1  
Increased vascular permeability without morphological damage to the capillary endothelium is the cardinal feature of dengue haemorrhagic fever (DHF)/dengue shock syndrome (DSS). Extensive plasma leakage in various tissue spaces and serous cavities of the body, including the pleural, pericardial and peritoneal cavities in patients with DHF, may result in profound shock. Among various mechanisms that have been considered include immune complex disease, T-cell-mediated, antibodies cross-reacting with vascular endothelium, enhancing antibodies, complement and its products, various soluble mediators including cytokines, selection of virulent strains and virus virulence, but the most favoured are enhancing antibodies and memory T cells in a secondary infection resulting in cytokine tsunami. Whatever the mechanism, it ultimately targets vascular endothelium (making it a battlefield) leading to severe dengue disease. Extensive recent work has been done in vitro on endothelial cell monolayer models to understand the pathophysiology of vascular endothelium during dengue virus (DV) infection that may be translated to help understand the pathogenesis of DHF/DSS. The present review provides a broad overview of the effects of DV infection and the associated host responses contributing towards alterations in vascular endothelial cell physiology and damage that may be responsible for the DHF/DSS.  相似文献   

5.
Dengue fever, caused by infection with dengue virus, is not a new disease, but recently because of its serious emerging health threats, coupled with possible dire consequences including death, it has aroused considerable medical and public health concerns worldwide. Today, dengue is considered one of the most important arthropod-borne viral diseases in humans in terms of morbidity and mortality. Globally, it is estimated that approximate 50 to 100 million new dengue virus infections occur annually. Among these, there are 200,000 to 500,000 cases of potential life-threatening dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), characterized by thrombocytopenia and increased vascular permeability. The death rate associated with the more severe form DHF/DSS is approximately 5%, predominantly in children under the age of 15. Although intensive efforts have been made to study the early clinical pathophysiology of dengue infection with the objective to identify the potential cause of DHF, results or data that have accumulated from different regions of the world involving studies of different ethnicity groups are inconsistent at present in terms of identifying a unified hypothesis for the pathogenesis of DHF/DSS. Thus, the potential mechanisms involved in the pathogenesis of DHF and DSS remain elusive. The purpose of this review is to identify alternate factors, such as innate immune parameters, hyper-thermal factors, conditioning of neutralizing antibody, concept of vector transmission, and physical status of virus in viremic patients that may play a role in the induction of DHF and DSS, which might have directly or indirectly contributed to the discrepancies that are noted in the literature reported to date. It is the hope that identification of an alternative explanation for the pathogenesis of DHF/DSS will pave the way for the institution of new strategies for the prevention of this complicated disease.  相似文献   

6.
7.
Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Preexisting antibodies to dengue virus disposes patients to immune-enhanced edema (DSS) or hemorrhagic (DHF) disease following infection by a discrete dengue virus serotype. Although the endothelium is the primary vascular fluid barrier, direct effects of dengue virus on endothelial cells (ECs) have not been considered primary factors in pathogenesis. Here, we show that dengue virus infection of human ECs elicits immune-enhancing EC responses. Our results suggest that rapid early dengue virus proliferation within ECs is permitted by dengue virus regulation of early, but not late, beta interferon (IFN-β) responses. The analysis of EC responses following synchronous dengue virus infection revealed the high-level induction and secretion of immune cells (T cells, B cells, and mast cells) as well as activating and recruiting cytokines BAFF (119-fold), IL-6/8 (4- to 7-fold), CXCL9/10/11 (45- to 338-fold), RANTES (724-fold), and interleukin-7 (IL-7; 128-fold). Moreover, we found that properdin factor B, an alternative pathway complement activator that directs chemotactic anaphylatoxin C3a and C5a production, was induced 34-fold. Thus, dengue virus-infected ECs evoke key inflammatory responses observed in dengue virus patients which are linked to DHF and DSS. Our findings suggest that dengue virus-infected ECs directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These data implicate EC responses in dengue virus pathogenesis and further rationalize therapeutic targeting of the endothelium as a means of reducing the severity of dengue virus disease.  相似文献   

8.

Background

Infection with dengue viruses (DENV) causes a wide range of manifestations from asymptomatic infection to a febrile illness called dengue fever (DF), to dengue hemorrhagic fever (DHF). The in vivo targets of DENV and the relation between the viral burden in these cells and disease severity are not known.

Method

The levels of positive and negative strand viral RNA in peripheral blood monocytes, T/NK cells, and B cells and in plasma of DF and DHF cases were measured by quantitative RT-PCR.

Results

Positive strand viral RNA was detected in monocytes, T/NK cells and B cells with the highest amounts found in B cells. Viral RNA levels in CD14+ cells and plasma were significantly higher in DHF compared to DF, and in cases with a secondary infection compared to those undergoing a primary infection. The distribution of viral RNA among cell subpopulations was similar in DF and DHF cases. Small amounts of negative strand RNA were found in a few cases only. The severity of plasma leakage correlated with viral RNA levels in plasma and in CD14+ cells.

Conclusions

B cells were the principal cells containing DENV RNA in peripheral blood, but overall there was little active DENV RNA replication detectable in peripheral blood mononuclear cells (PBMC). Secondary infection and DHF were associated with higher viral burden in PBMC populations, especially CD14+ monocytes, suggesting that viral infection of these cells may be involved in disease pathogenesis.  相似文献   

9.
Little is known of the role of human leucocyte antigen (HLA) alleles or non-HLA alleles in determining resistance, susceptibility or the severity of acute viral infections. Dengue fever (DF) and dengue haemorrhagic fever (DHF) are suitable models for immunogenetic studies, yet only superficial efforts have been made to study dengue disease to date. DF and DHF can be caused by both primary and secondary infection by any of the four serotypes of the dengue virus. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virus virulence. Variations in immune response, often associated with polymorphism in the human genome, can now be detected. Data on the influence of human genes in DF and DHF are discussed here in relation to (1) associations between HLA polymorphism and dengue disease susceptibility or resistance, (2) protective alleles influencing progression to severe disease, (3) alleles restricting CD4(+) and CD8(+) T lymphocytes, and (4) non-HLA genetic factors that may contribute to DHF evolution. Recent discoveries regarding genetic associations in other viral infections may provide clues to understanding the development of end-stage complications in dengue disease. The scanty positive data presented here indicate a need for detailed genetic studies in different ethnic groups in different countries during the acute phase of DF and DHF on a larger number of patients.  相似文献   

10.
T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.  相似文献   

11.

Background

Dengue viral infection is a global health threat without vaccine or specific treatment. The clinical outcome varies from asymptomatic, mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF). While adaptive immune responses were found to be detrimental in the dengue pathogenesis, the roles of earlier innate events remain largely uninvestigated. Invariant natural killer T (iNKT) cells represent innate-like T cells that could dictate subsequent adaptive response but their role in human dengue virus infection is not known. We hypothesized that iNKT cells play a role in human dengue infection.

Methods

Blood samples from a well-characterized cohort of children with DF, DHF, in comparison to non-dengue febrile illness (OFI) and healthy controls at various time points were studied. iNKT cells activation were analyzed by the expression of CD69 by flow cytometry. Their cytokine production was then analyzed after α-GalCer stimulation. Further, the CD1d expression on monocytes, and CD69 expression on conventional T cells were measured.

Results

iNKT cells were activated during acute dengue infection. The level of iNKT cell activation associates with the disease severity. Furthermore, these iNKT cells had altered functional response to subsequent ex vivo stimulation with α-GalCer. Moreover, during acute dengue infection, monocytic CD1d expression was also upregulated and conventional T cells also became activated.

Conclusion

iNKT cells might play an early and critical role in the pathogenesis of severe dengue viral infection in human. Targeting iNKT cells and CD1d serve as a potential therapeutic strategy for severe dengue infection in the future.  相似文献   

12.
Heterologous prime/boost regimens are AIDS vaccine candidates because of their potential for inducing cellular immune responses. Here, we have developed a prime/boost regimen leading to rapid control of highly pathogenic immunodeficiency virus infection in macaques. The strategy, priming by an env and nef deletion-containing simian-human immunodeficiency virus (SHIV) proviral DNA followed by a single booster with a Gag-expressing Sendai virus (SeV-Gag), efficiently induced virus-specific T cells, which were maintained for more than 3 months until challenge. While all naive control macaques showed acute CD4(+) T-cell depletion at week 2 after an intravenous SHIV89.6PD challenge, all the macaques vaccinated with the prime/boost regimen were protected from depletion and showed greatly reduced peak viral loads compared with controls. Vaccination with the DNA alone or SeV-Gag alone was not enough to confer the consistent protection from the depletion, although it led to efficient secondary CD8(+) T-cell responses at week 2 after challenge. At week 1, a difference in the secondary responses between the protected and the unprotected macaques was clear; rapid augmentation of virus-specific CD8(+) T cells was detected in the former but not in the latter. Thus, our results indicate the importance of rapid secondary responses for reduction in the peak viral loads and protection from acute CD4(+) T-cell depletion.  相似文献   

13.
Dengue hemorrhagic fever (DHF), the severe manifestation of dengue virus (DV) infection characterized by plasma leakage, is more common in secondary DV infections in previously infected individuals and is associated with high levels of immune activation. To determine the Ag specificity of this immune response, we studied the response to an HLA-B*07-restricted T cell epitope, residues 221-232 of the DV NS3 protein, in 10 HLA-B*07(+) Thai children who were studied during and after acute DV infections. Peptide-specific T cells were detected in 9 of 10 subjects. The frequency of peptide-specific T cells was higher in subjects who had experienced DHF than in those who had experienced DF. We also detected peptide-specific T cells in PBMC obtained at the time of the acute DV infection in 2 of 5 subjects. These data suggest that the NS3 (221-232) epitope is an important target of CD8(+) T cells in secondary DV infection and that the activation and expansion of DV-specific T cells is greater in subjects with DHF than in those with dengue fever. These findings support the hypothesis that activation of DV-specific CD8(+) T cells plays an important role in the pathogenesis of DHF.  相似文献   

14.
Some individuals infected with dengue virus develop dengue hemorrhagic fever (DHF), a viral hemorrhagic disease characterized by a transient period of localized plasma leakage. To determine the importance of vascular endothelial growth factor A (VEGF-A) in this syndrome, we compared plasma levels of VEGF-A and the soluble forms of its receptors in patients with DHF to patients with dengue fever (DF), a milder form of dengue virus infection without plasma leakage. We observed a rise in the plasma levels of free, but not total VEGF-A in DHF patients at the time of plasma leakage. This was associated with a decline in the soluble form of VEGF receptor 2 (VEGFR2) and VEGF-soluble VEGFR2 complexes, but not the soluble form of VEGFR1. The severity of plasma leakage in patients inversely correlated with plasma levels of soluble VEGFR2. In vitro, dengue virus suppressed soluble VEGFR2 production by endothelial cells but up-regulated surface VEGFR2 expression and promoted response to VEGF stimulation. In vivo, plasma viral load correlated with the degree of decline in plasma soluble VEGFR2. These results suggest that VEGF regulates vascular permeability and its activity is controlled by binding to soluble VEGFR2. Dengue virus-induced changes in surface and soluble VEGFR2 expression may be an important mechanism of plasma leakage in DHF.  相似文献   

15.
16.
We analyzed the CD4+ T-lymphocyte responses to dengue, West Nile, and yellow fever viruses 4 months after immunization of a volunteer with an experimental live-attenuated dengue virus type 1 vaccine (DEN-1 45AZ5). We examined bulk culture proliferation to noninfectious antigens, determined the precursor frequency of specific CD4+ T cells by limiting dilution, and established and analyzed CD4+ T-cell clones. Bulk culture proliferation was predominantly dengue virus type 1 specific with a lesser degree of cross-reactive responses to other dengue virus serotypes, West Nile virus, and yellow fever virus. Precursor frequency determination by limiting dilution in the presence of noninfectious dengue virus antigens revealed a frequency of antigen-reactive cells of 1 in 1,686 peripheral blood mononuclear cells (PBMC) for dengue virus type 1, 1 in 9,870 PBMC for dengue virus type 3, 1 in 14,053 PBMC for dengue virus type 2, and 1 in 17,690 PBMC for dengue virus type 4. Seventeen CD4+ T-cell clones were then established by using infectious dengue virus type 1 as antigen. Two patterns of dengue virus specificity were found in these clones. Thirteen clones were dengue virus type 1 specific, and four clones recognized both dengue virus types 1 and 3. Analysis of human leukocyte antigen (HLA) restriction revealed that five clones are HLA-DRw52 restricted, one clone is HLA-DP3 restricted, and one clone is HLA-DP4 restricted. These results indicate that in this individual, the CD4+ T-lymphocyte responses to immunization with live-attenuated dengue virus type 1 vaccine are predominantly serotype specific and suggest that a multivalent vaccine may be necessary to elicit strong serotype-cross-reactive CD4+ T-lymphocyte responses in such individuals.  相似文献   

17.
Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone recognized dengue virus types 1, 2, and 3. Four dengue virus serotype-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4. One flavivirus-cross-reactive clone recognized dengue virus types 1, 2, 3, and 4 and West Nile virus (WNV), but did not recognize yellow fever virus (YFV), whereas three flavivirus-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4, WNV, and YFV. HLA restriction in the lysis by these T-cell clones was also heterogeneous. HLA-DP, HLA-DQ, and HLA-DR were used as restriction elements by various T-cell clones. We also examined the recognition of viral nonstructural protein NS3, purified from cells infected with dengue virus type 3 or WNV, by these T-cell clones. One serotype-specific clone, two dengue virus subcomplex-specific clones, and three dengue virus serotype-cross-reactive clones recognized NS3 of dengue virus type 3. One flavivirus-cross-reactive clone recognized NS3 of dengue virus type 3 and WNV. These results indicate that heterogeneous dengue virus-specific CD4+ cytotoxic T cells are stimulated in response to infection with a dengue virus and that a nonstructural protein, NS3, contains multiple dominant T-cell epitopes.  相似文献   

18.
Proinflammatory cytokines secreted by memory CD8+ and CD4+ T cells are thought to play a direct role in the pathogenesis of dengue virus infection by increasing vascular permeability and thereby inducing the pathophysiologic events associated with dengue hemorrhagic fever and dengue shock syndrome. Severe disease is frequently observed in the setting of secondary infection with heterologous dengue virus serotypes, suggesting a role for cross-reactive memory T cells in the immunopathogenesis of severe disease. We used a large panel of well-characterized dengue virus-specific CD8+ T-cell clones isolated from Pacific Islanders previously infected with dengue virus 1 to examine effector memory function, focusing on a novel dominant HLA-B*5502-restricted NS5(329-337) epitope, and assessed T-cell responses to stimulation with variant peptides representing heterologous serotypes. Variant peptides were differentially recognized by dengue virus 1-specific effector CD8+ cytotoxic T lymphocytes (CTL) in a heterogeneous and clone-specific manner, in which cytolytic function and cytokine secretion could be enhanced, diminished, or abrogated compared with cognate peptide stimulation. Dengue virus-specific CTL stimulated with cognate and variant peptides demonstrated a cytokine response hierarchy of gamma IFN (IFN-gamma) > tumor necrosis factor alpha (TNF-alpha) > interleukin-2 (IL-2), and a subset of clones also produced IL-4 and IL-6. Individual clones demonstrated greater avidity for variant peptides representing heterologous serotypes, including serotypes previously encountered by the subject, and IFN-gamma and TNF-alpha secretion was enhanced by stimulation with these heterologous peptides. Altered antiviral T-cell responses in response to stimulation with heterologous dengue virus serotypes have implications for control of virus replication and for disease pathogenesis.  相似文献   

19.
The immunosuppressive effect of Cyclosporin A on T-cell-mediated antiviral immune responses was examined. When administered intraperitoneally CS-A abrogated anti-vaccinia virus, anti-lymphocytic choriomeningitis virus (LCMV), and anti-vesicular stomatitis virus (VSV) T-cell responses in a dose-dependent fashion. Usually 50-60 mg/kg were efficient in suppressing primary T-cell responses completely. In contrast, 10-20 mg/kg often enhanced T-cell responses significantly when compared with controls. Suppression was observed if CS-A treatment was started before virus injection and up to 12 hr after infection; CS-A given 24 hr after the virus still suppressed T-cell activity partially. A 50 mg/kg dose of CS-A suppressed secondary anti-vaccinia virus or anti-VSV T-cell responses in vivo by a factor of about 10. This dose suppressed the primary T-cell-dependent footpad swelling induced by local LCMV infection and prevented T-cell-mediated immunopathological death due to LCM when LCMV was injected intracerebrally. In addition, clearance of LCMV was delayed drastically by CS-A treatment. When added to cultures of in vivo-primed antiviral T cells that were restimulated in vitro, CS-A inhibited both proliferation as well as generation of virus-specific cytotoxic T cells in a dose-dependent way. The results show that in CS-A-treated mice primary and secondary antiviral T-cell responses are strongly inhibited; acute viral infections with cytopathic viruses may therefore be more dramatic. In contrast immunopathological T-cell-mediated disease caused by noncytopathic viruses such as LCMV may be prevented or attenuated.  相似文献   

20.
Immunopathogenesis of dengue virus infection   总被引:19,自引:0,他引:19  
Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-gamma/TNFalpha-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号