首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.  相似文献   

2.
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.  相似文献   

3.
4.
Arachidonic acid (AA) can be released from membrane phospholipids by the action of phospholipase A2 (PLA2). There is evidence that unsaturated fatty acids, particularly AA, released from membrane phospholipids are required to activate the respiratory burst of macrophages. The data reported here indicate that peritoneal macrophages harvested 30 min after i.p. injection of PLA2 can phagocytose Candida albicans more efficiently and emit more chemoluminescence (CL) than normal cells when stimulated by zymosan. PLA2 injection also enhances the CL of peritoneal cells from mice already stimulated by immunomodulators such as trehalose dimycolate (TDM), bestatin, or oncostatic drugs such as aclacinomycin (ACM). CL is not sensitive to potassium cyanide (KCN), but is inhibited by catalase, superoxide dismutase (SOD), nordihydroguaiaretic acid (NDGA) and high doses of indomethacin (10(-3) M). In vivo PLA2 treatment stimulates the synthesis of both cyclooxygenase and lipoxygenase derivatives of AA metabolism (PGE2, 6-keto, PGF1 alpha TXB2 and LTC4). Inhibitors of AA metabolism (NDGA, indomethacin) modulate the production of free oxidizing radicals in this experimental model, partly because of their effect on AA metabolism, as determined by the measuring immunoreactive products. However, this work indicates that the effects of these inhibitors, which have been extensively used in CL studies, should be interpreted with caution, since their specificity for AA metabolism is relative.  相似文献   

5.
To examine the role of endogenous arachidonic acid (AA) as the possible second messenger signal in interferon-gamma (IFN-gamma) production, helper cell-depleted mouse spleen cell cultures were treated with the enzyme phospholipase A2 (PLA2). Treatment with PLA2 from several different animal sources at concentrations between 10 and 300 U/ml resulted in complete, dose-dependent restoration of competence for IFN-gamma production. By comparison, phospholipase C (PLC) from several different species failed to restore competence at concentrations between 0.3 and 30 U/ml; the inability of PLC to provide the helper signal for induction of IFN-gamma was not due to cytotoxicity. Since PLA2 provides competence for IFN-gamma production by sn-2 hydrolysis, it was of interest to identify eicosanoids and other lipids released from [3H]-AA labeled cells by PLA2 and PLC. Treatment of spleen cells with PLA2, but not PLC, resulted in the appreciable release of AA only. Sufficient AA was released from spleen cells for restoration of competence for production of IFN-gamma. All glycerol-derived cell membrane phospholipids examined (phosphatidylethanolamine, -inositol, -choline, and -serine) incorporated labeled AA which was releasable by treatment with PLA2. The data support and extend previous studies which suggested that AA plays a pivotal role in mediation of the interleukin 2 helper signal for IFN-gamma production.  相似文献   

6.
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   

7.
The first step in prostacyclin (PGI(2)) synthesis involves the generation of arachidonic acid (AA) from membrane phospholipids mediated by the 85 kDa cytosolic phospholipase A(2) (cPLA(2)alpha). The current study examined the effects of secretory PLA(2)s (sPLA(2)s) on PGI(2) production by human umbilical vein endothelial cells (HUVEC). We demonstrate that exposure of HUVEC to sPLA(2) dose- and time-dependently enhances AA release and PGI(2) generation. sPLA(2)-stimulated AA mobilisation was blocked by AACOCF(3), an inhibitor of cPLA(2)alpha, suggesting cross-talk between the two classes of PLA(2). sPLA(2) induced the phosphorylation of cPLA(2)alpha and enhanced the phosphorylation states of p42/44(mapk), p38(mapk), and JNK, concomitant with elevated AA and PGI(2) release. The MEK inhibitor PD98059 attenuated sPLA(2)-stimulated cPLA(2)alpha phosphorylation and PGI(2) release. These data show that sPLA(2) cooperates with cPLA(2)alpha in a MAPK-dependent manner to regulate PGI(2) generation and suggests that cross-talk between sPLA(2) and cPLA(2)alpha is a physiologically important mechanism for enhancing prostanoid production in endothelial cells.  相似文献   

8.
Arachidonic Acid (AA) released from membrane phospholipids by phospholipase A2 during cell activation is the major polyunsaturated fatty acid precursor in mammals for the cyclooxygenase and lipoxygenase pathways. Eicosapentaenoic acid (EPA), a major polyunsaturated fatty acid in fish oils competes with AA for these enzymes. The resulting products from EPA are generally less potent than the corresponding AA metabolites which may explain the beneficial effects of this oil in reducing thrombotic and inflammatory responses. This study compares the incorporation of 14C-AA into leukocyte phospholipids and its release and metabolism by the cyclooxygenase and lipoxygenase pathways in rats fed a 'Max EPA' fish oil rich diet (EPA group) and a hydrogenated coconut/safflower oil control diet. More than 75% of radiolabel was incorporated into leukocytes with no difference seen between dietary groups. Upon stimulation with calcium ionophore, the EPA group released significantly more radiolabelled AA than the control group. The EPA diet showed a significant increase in the formation of 5-hydroxyeicosatetraenoic acid and 6-keto-prostaglandin F1 alpha but no difference was seen in leukotriene B4 formation. The majority of radiolabel released was free AA, this being significantly higher in the EPA group than in the control. The percentage of radiolabel remaining after stimulation in phosphatidylglycerol, phosphatidylethanolamine and neutral lipids was significantly less in EPA fed rats. As the release and metabolism of endogenous AA may not be the same as 14C-AA, these results do not necessarily indicate that the mass of AA available for eicosanoid biosynthesis has been altered by the EPA diet.  相似文献   

9.
Previous studies have shown that reactive oxygen species (ROS) enhance arachidonic acid (AA) release and the subsequent AA metabolism in macrophages. The purpose of this study was determined the implication of phospholipases A2 (PLA2s) in these events. Our results show that oxidative stress induced by exogenous adding of hydrogen peroxide or superoxide anion in macrophage RAW 264.7 and mouse peritoneal macrophage cultures caused a marked enhancement of calcium-independent PLA2 (iPLA2) activity,whereas the increment of secreted PLA2 (sPLA2) and calcium-dependent cytosolic PLA2 (cPLA2) activities were slight. This increase of iPLA2 activity by ROS was rapid and dose-dependent. ROS also induced a significant [3H] arachidonic acid (AA) release. The iPLA2 selective inhibitor, bromoenol lactone, almost completely suppressed the mobilization of [3H]AA induced by ROS whereas antisense oligonucleotide against cPLA2 did not have any appreciable effect. Thus, our data show that iPLA2 activity is involved in the mechanism by which ROS increases the availability of free AA in macrophages RAW 264.7. Moreover, the protein kinase C (PKC) inhibitor, calphostin C, and calcium chelators had no effect on the [3H]AA release induced by ROS, suggesting this is a regulatory role of iPLA2.  相似文献   

10.
Phospholipases A(2) (PLA(2)s) are essential enzymes in cells. They are not only responsible for maintaining the structural organization of cell membranes, but also play a pivotal role in the regulation of cell functions. Activation of PLA(2) s results in the release of fatty acids and lysophospholipids, products that are lipid mediators and compounds capable of altering membrane microdomains and physical properties. Although not fully understood, recent studies have linked aberrant PLA(2) activity to oxidative signaling pathways involving NADPH oxidase that underlie the pathophysiology of a number of neurodegenerative diseases. In this paper, we review studies describing the involvement of cytosolic PLA(2) in oxidative signaling pathways leading to neuronal impairment and activation of glial cell inflammatory responses. In addition, this review also includes information on the role of cytosolic PLA(2) and exogenous secretory PLA(2) on membrane physical properties, dynamics, and membrane proteins. Unraveling the mechanisms that regulate specific types of PLA(2)s and their effects on membrane dynamics are important prerequisites towards understanding their roles in the pathophysiology of Alzheimer's disease, and in the development of novel therapeutics to retard progression of the disease.  相似文献   

11.
Previously, we reported a growth-dependent change in prostaglandin production as a consequence of a marked growth-dependent alteration in arachidonic acid (AA) mobilization from phospholipids. Our present results show that fetal calf serum (FCS) and 4 beta-phorbol-12-myristate acetate (PMA) caused an enhancement of phospholipase A(2) (PLA(2)) activity in the membrane fraction of non-confluent cells allowing PLA(2) access to its substrate and the release of AA. Western blot analysis has shown that FCS and PMA increased secreted PLA(2) (sPLA(2)) expression in non-confluent 3T6 fibroblast cultures. Moreover, FCS and PMA induced dithiothreitol-sensitive and bromoenol lactone-sensitive PLA(2) activities in cytosol and membrane fraction. However, these stimuli did not modify significantly the PLA(2) activity in both fractions when 3T6 fibroblasts reached a high cell density. This could be associated with the impairment of AA mobilization in these cell culture conditions. On the other hand, we observed that FCS and PMA induced the same prostaglandin H synthase-2 induction in non-confluent and confluent culture conditions. Moreover, the prostaglandin E(2) levels reached in cell culture supernatants were independent of the degree of confluence when AA was added exogenously. These results suggest that the changes of intracellular distribution of PLA(2) activity of sPLA(2) and iPLA(2) stimulated by exogenous stimuli may be controlled by cell density conditions which constitute an important mechanism in the regulation of prostaglandin release.Copyright 2001 Wiley-Liss, Inc.  相似文献   

12.
The importance of lipids in cell signaling and tissue physiology is demonstrated by the many CNS pathologies involving deregulated lipid metabolism. One such critical metabolic event is the activation of phospholipase A(2) (PLA(2)), which results in the hydrolysis of membrane phospholipids and the release of free fatty acids, including arachidonic acid, a precursor for essential cell-signaling eicosanoids. Reactive oxygen species (ROS, a product of arachidonic acid metabolism) react with cellular lipids to generate lipid peroxides, which are degraded to reactive aldehydes (oxidized phospholipid, 4-hydroxynonenal, and acrolein) that bind covalently to proteins, thereby altering their function and inducing cellular damage. Dissecting the contribution of PLA(2) to lipid peroxidation in CNS injury and disorders is a challenging proposition due to the multiple forms of PLA(2), the diverse sources of ROS, and the lack of specific PLA(2) inhibitors. In this review, we summarize the role of PLA(2) in CNS pathologies, including stroke, spinal cord injury, Alzheimer's, Parkinson's, Multiple sclerosis-Experimental autoimmune encephalomyelitis and Wallerian degeneration.  相似文献   

13.
ExoU PLA2-like activity has been shown to account for membrane lysis and acute death of infected cells. Translocation of effector proteins by the type III secretion systems depends on close contact between microbial and host cells. Our finding that both the ExoU-producing PA103 Pseudomonas aeruginosa and its mutant obtained by deletion of exoU adhered poorly to endothelial cells (EC) led to the hypothesis that, in some cells, the amount of injected toxin may not be enough to induce cell lysis but cells would suffer from a long-term effect of ExoU intoxication. To address this question, cells were exposed to both bacteria for 1 h and then treated with gentamicin-containing medium, to eliminate infecting microorganisms. After 24 h, the percentage of viable EC in PA103-infected cultures was significantly lower than in cultures exposed to the mutant, as determined by the MTT assay. Cell death was not likely to depend on the ExoU lytic activity since cell labeling with propidium iodide was similar in cultures infected with both bacterial strains. Bacterial cytotoxicity was significantly reduced by MAFP, a specific inhibitor of cPLA2 and iPLA2. Since the PLA2 activity on membrane phospholipids generates free fatty acid, including arachidonic acid (AA), we next compared the bacterial ability to release AA from infected EC. PA103 was shown to induce a potent AA release that was inhibited by MAFP. AA oxidation by oxygenases generates eicosanoids, known to induce both cell death and proliferation. However neither inhibitors of cyclooxygenases (ibuprofen) nor lipoxygenases (NDGA) reduced the ExoU toxicity. Since non-enzymatic oxidation of AA generates reactive radicals, we next investigated the PA103 ability to induce oxidative stress in infected cells. FACS analysis of cell labeling with the C-11 fluor probe and with anti-4-hydroxynonel antibody revealed a significant peroxidation of cell membrane lipids. These results, together with our finding that PA103-infected EC death was significantly attenuated by alpha-tocopherol, led to the conclusion that AA-induced oxidative stress may be another mechanism of cell damage in the course of infection by ExoU-producing P. aeruginosa.  相似文献   

14.
To create the unique properties of a certain cellular membrane, both the composition and the metabolism of membrane phospholipids are key factors. Phospholipase A(2) (PLA(2)), with hydrolytic enzyme activities at the sn-2 position in glycerophospholipids, plays critical roles in maintaining the phospholipid composition as well as producing bioactive lipid mediators. In this study we examined the contribution of a Ca(2+)-independent group IVC PLA(2) isozyme (cPLA(2)gamma), a paralogue of cytosolic PLA(2)alpha (cPLA(2)alpha), to phospholipid remodeling. The enzyme was localized in the endoplasmic reticulum and Golgi apparatus, as seen using green fluorescence fusion proteins. Electrospray ionization mass spectrometric analysis of membrane extracts revealed that overexpression of cPLA(2)gamma increased the proportion of polyunsaturated fatty acids in phosphatidylethanolamine, suggesting that the enzyme modulates the phospholipid composition. We also found that H(2)O(2) and other hydroperoxides induced arachidonic acid release in cPLA(2)gamma-transfected human embryonic kidney 293 cells, possibly through the tyrosine phosphorylation pathway. Thus, we propose that cPLA(2)gamma is constitutively expressed in the endoplasmic reticulum and plays important roles in remodeling and maintaining membrane phospholipids under various conditions, including oxidative stress.  相似文献   

15.
Phospholipases A2 (PLA2) comprise a set of extracellular and intracellular enzymes that catalyze the hydrolysis of the sn-2 fatty acyl bond of phospholipids to yield fatty acids and lysophospholipids. The PLA2 reaction is the primary pathway through which arachidonic acid (AA) is released from phospholipids. PLA2s have an important role in cellular death that occurs via necrosis or apoptosis. Several reports support the hypothesis that unesterified arachidonic acid in cells is a signal for the induction of apoptosis. However, most of the biological effects of arachidonic acid are attributable to its metabolism by mainly three different groups of enzymes: cytochromes P450, cyclooxygenases, and lipoxygenases. In this review we will focus on the role of cytochrome P450 in AA metabolism and toxicity. The major pathways of arachidonic acid metabolism catalyzed by cytochrome P450 generate metabolites that are subdivided into two groups: the epoxyeicosatrienoic acids, formed by CYP epoxygenases, and the arachidonic acid derivatives that are hydroxylated at or near the omega-terminus by CYP omega-oxidases. In addition, autoxidation of AA by cytochrome P450-derived reactive oxygen species produces lipid hydroperoxides as primary oxidation products. In some cellular models of toxicity, cytochrome P450 activity exacerbates PLA2- and AA-dependent injury, mainly through the production of oxygen radicals that promote lipid peroxidation or production of metabolites that alter Ca2+ homeostasis. In contrast, in other situations, cytochrome P450 metabolism of AA is protective, mainly by lowering levels of unesterified AA and by production of metabolites that activate antiapoptotic pathways. Several lines of evidence point to the combined action of phospholipase A2 and cytochrome P450 as central in the mechanism of cellular injury in several human diseases, such as alcoholic liver disease and myocardial reperfusion injury. Inhibition of specific PLA2 and cytochrome P450 isoforms may represent novel therapeutic strategies against these diseases.  相似文献   

16.
Brain phospholipids are highly enriched in docosahexaenoic acid (DHA; 22:6n-3). Recent advances indicate that 22:6n-3 is released from brain phospholipids via the action of phospholipase A2 (PLA2) in response to several stimuli, including neurotransmission, where it then acts as a secondary messenger. Furthermore, it is now known that released 22:6n-3 is a substrate for several oxygenation enzymes whose products are potent signaling molecules. One emerging candidate PLA2 involved in the release of 22:6n-3 from brain phospholipids is the group VI calcium-independent phospholipase A2 (iPLA2). After a brief review of brain 22:6n-3 metabolism, cell culture and rodent studies facilitating the hypothesis that group VI iPLA2 releases 22:6n-3 from brain phospholipids are discussed. The identification of PLA2s involved in cleaving 22:6n-3 from brain phospholipids could lead to the development of novel therapeutics for brain disorders in which 22:6n-3 signaling is disordered.  相似文献   

17.
The hydrolysis of cell membrane phospholipids by phospholipase A(2) (PLA(2)) leads to the production of numerous lipid mediators of diverse pathological conditions, mainly inflammatory diseases. These include lysophospholipids and their derivatives, and arachidonic acid and its derivatives (the eicosanoids). Both these groups of mediators are produced predominantly by the secretory PLA(2)s (sPLA(2)s) which hydrolyze the phospholipids of the cell surface membrane. Protection of cell membrane from these 'inflammatory enzymes' can therefore be used for the treatment of inflammatory processes. A prototype of cell-impermeable PLA(2) inhibitors, which protect the cell membrane from different sPLA(2)s without affecting vital phospholipid metabolism, is presented and discussed in the present review.  相似文献   

18.
The objectives of this work are to investigate the incorporation of arachidonic acid (AA) in the human myeloma cell lines OPM2, U266 and IM9, and to assess the effect of AA and lipoxygenase products of AA on their growth. The kinetics of acylation of [3H]AA indicates that myeloma cells incorporate AA into their membrane phospholipids and triglycerides. PLA2-treatment and base hydrolysis experiments confirm that [3H]AA is incorporated unmodified in U266, IM9 and OPM2 phospholipids, and is linked by an ester bond. Prelabeling-chase experiments indicate no trafficking of labeled AA among the various phospholipid species. Addition of AA and lipoxygenase products of AA (leukotriene B4 and C4, lipoxin A4 and B4, 12- and 15-hydroxyeicosatetraenoic acid) have no effect on U266, IM9 and OPM2 proliferation assessed by [3H]thymidine incorporation into DNA. In conclusion, while human myeloma cells readily incorporate AA in their membrane phospholipids and triglycerides, AA and lipoxygenase products are not important modulators of their proliferation.  相似文献   

19.
Exposure of rabbit pulmonary arterial smooth muscle cells to hydrogen peroxide cause dose-dependent stimulation of [14C] arachidonic acid (AA) release and enhancement of the cell membrane-associated phospholipase A2 activity as well as of the cell membrane-bound serine esterase activity tested against synthetic substrate p-tosyl-L-arginine methyl ester. While pretreatment of cells with serine protease inhibitors, viz. phenyl methyl sulphonyl fluoride, diisopropyl fluorophosphate and alpha-1-proteinase inhibitor, and antioxidant vitamin E prevents H2O2 stimulation of AA release and the cell membrane-bound serine esterase and PLA2 activities, that with actinomycin D and cycloheximide is devoid of any effect on H2O2 caused stimulation of AA release and the smooth muscle cell membrane associated serine esterase and PLA2 activities. Treatment of the smooth muscle cell membrane suspension with the serine protease trypsin markedly stimulates PLA2 activity. These results suggest that on exposure to H2O2 the smooth muscle cell membrane-bound serine esterase plays an important role in stimulating the cell membrane associated PLA2 activity thereby resulting in an increase in AA release.  相似文献   

20.
Accumulating evidence has suggested that cytosolic phospholipase A(2) (cPLA(2)) and several secretory PLA(2) (sPLA(2)) isozymes are signaling PLA(2)s that are functionally coupled with downstream cyclooxygenase (COX) isozymes for prostaglandin (PG) biosynthesis. Arachidonic acid (AA) released by cPLA(2) and sPLA(2)s is supplied to both COX-1 and COX-2 in the immediate, and predominantly to COX-2 in the delayed, PG-biosynthetic responses. Vimentin, an intermediate filament component, acts as a functional perinuclear adapter for cPLA(2), in which the C2 domain of cPLA(2) associates with the head domain of vimentin in a Ca(2+)-sensitive manner. The heparin-binding signaling sPLA(2)-IIA, IID and V bind the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican, which plays a role in sorting of these isozymes into caveolae and perinuclear compartments. Phospholipid scramblase, which facilitates transbilayer movement of anionic phospholipids, renders the cellular membranes more susceptible to signaling sPLA(2)s. There is functional cooperation between cPLA(2) and signaling sPLA(2)s in that prior activation of cPLA(2) is required for the signaling sPLA(2)s to act properly. cPLA(2)-derived AA is oxidized by 12/15-lipoxygenase, the products of which not only augment the induction of sPLA(2) expression, but also cause membrane perturbation, leading to increased cellular susceptibility to the signaling sPLA(2)s. sPLA(2)-X, a heparin-non-binding sPLA(2) isozyme, is capable of releasing AA from intact cells in the absence of cofactors. This property is attributed to its ability to avidly hydrolyze zwitterionic phosphatidylcholine, a major phospholipid in the outer plasma membrane. sPLA(2)-V can also utilize this route in several cell types. Taken together, the AA-releasing function of sPLA(2)s depends on the presence of regulatory cofactors and interfacial binding to membrane phospholipids, which differ according to cell type, stimuli, secretory processes, and subcellular distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号