首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro formation of amyloid fibrils from intact beta 2-microglobulin   总被引:9,自引:0,他引:9  
Prompted by the identification of hemodialysis-associated amyloid protein as beta 2-microglobulin, we attempted to create in vitro amyloid fibrils from the native protein. Beta 2-microglobulin in PBS was slowly dialyzed free of salt and then concentrated. The residue showed Congophilia with green birefringence by light microscopy and polarization, and non-branching fibrils of indeterminate length, measuring 8 to 10 nm in diameter by electron microscopy, thus meeting the morphologic criteria for amyloid. The present study demonstrates the first successful in vitro creation of amyloid fibrils with intact precursor protein molecules and provides supporting evidence that hemodialysis-associated amyloid is constituted from beta 2-microglobulin.  相似文献   

2.
  1. Download : Download high-res image (137KB)
  2. Download : Download full-size image
  相似文献   

3.
Streptococcus mutans, a gram-positive immobile bacterium, is an oral pathogen considered to be the principal etiologic agent of dental caries. Although some researches suggest that trace metals, including iron, can be associated with dental caries, the function of salivary iron and lactoferrin in the human oral cavity remains unclear. The data reported in this study indicates that iron-deprived saliva (Fe3+ < 0.1 microM) increases S. mutans aggregation and biofilm formation in the fluid and adherent phases as compared with saliva (Fe3+ from 0.1 to 1 microM), while iron-loaded saliva (Fe3+ > 1 microM) inhibits both phenomena. Our findings are consistent with the hypothesis that S. mutans aggregation and biofilm formation are negatively iron-modulated as confirmed by the different effect of bovine lactoferrin (bLf), added to saliva at physiological concentration (20 microg/ml) in the apo- or iron-saturated form. Even if saliva itself induces bacterial aggregation, iron binding capability of apo-bLf is responsible for the noticeable increase of bacterial aggregation and biofilm development in the fluid and adherent phases. On the contrary, iron-saturated bLf decreases aggregation and biofilm development by supplying iron to S. mutans. Therefore, the iron-withholding capability of apo-Lf or native Lf is an important signal to which S. mutans counteracts by leaving the planktonic state and entering into a new lifestyle, biofilm, to colonize and persist in the human oral cavity. In addition, another function of bLf, unrelated to its iron binding capability, is responsible for the inhibition of the adhesion of S. mutans free, aggregated or biofilm on abiotic surfaces. Both these activities of lactoferrin, related and unrelated to the iron binding capability, could have a key role in protecting the human oral cavity from S. mutans pathogenicity.  相似文献   

4.
Misfolding and amyloid formation of transthyretin (TTR) is implicated in numerous degenerative diseases. TTR misfolding is greatly accelerated under acidic conditions, and thus most of the mechanistic studies of TTR amyloid formation have been conducted at various acidic pH values (2–5). In this study, we report the effect of pH on TTR misfolding pathways and amyloid structures. Our combined solution and solid-state NMR studies revealed that TTR amyloid formation can proceed via at least two distinct misfolding pathways depending on the acidic conditions. Under mildly acidic conditions (pH 4.4), tetrameric native TTR appears to dissociate to monomers that maintain most of the native-like β-sheet structures. The amyloidogenic protein undergoes a conformational transition to largely unfolded states at more acidic conditions (pH 2.4), leading to amyloid with distinct molecular structures. Aggregation kinetics is also highly dependent upon the acidic conditions. TTR quickly forms moderately ordered amyloids at pH 4.4, while the aggregation kinetics is dramatically reduced at a lower pH of 2.4. The effect of the pathogenic mutations on aggregation kinetics is also markedly different under the two different acidic conditions. Pathogenic TTR variants (V30M and L55P) aggregate more aggressively than WT TTR at pH 4.4. In contrast, the single-point mutations do not affect the aggregation kinetics at the more acidic condition of pH 2.4. Given that the pathogenic mutations lead to more aggressive forms of TTR amyloidoses, the mildly acidic condition might be more suitable for mechanistic studies of TTR misfolding and aggregation.  相似文献   

5.
Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N) cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT) cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation.  相似文献   

6.
A comparative study of amyloid properties of the aggregates of smooth muscle titin (SMT) from chicken gizzard was carried out. These aggregates were formed in two solutions: 0.15 M glycine-KOH, pH 7.2–7.4 (SMT(Gly)) and 0.2 M KCl, 10 mM imidazole, pH 7.0 (SMT(KCl)). Electron microscopy data showed that SMT aggregates has an amorphous structure in both cases. The results of atomic-force microscopy demonstrated slight differences in morphology in two types of aggregates. The SMT(Gly) aggregates were represented as branching chains, composed of spherical aggregates approximately 300–500 nm in diameter and up to 35 nm in height. The SMT(KCl) aggregates formed sponge-like structures with strands of 8–10 nm in height. Structural analysis of SMT aggregates by X-ray diffraction revealed the presence of cross-β-sheet structure in the samples under study. In the presence of SMT(Gly) aggregates, thioflavine T fluorescence intensity was higher (~3-fold times) compared with that in the presence of SMT(KCl) aggregates. Congo red-stained SMT(Gly) aggregates had yellow to apple-green birefringence under polarized light, which was not observed for SMT(KCl) aggregates. Dynamic light scattering data showed the similar rate of aggregation for both types of aggregates, though SMT(KCl) aggregates were able to partially disaggregate under increased ionic strength of the solution. The ability of SMT to aggregation followed by disaggregation may be functionally significant in the cell.  相似文献   

7.
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes.  相似文献   

8.
Macromolecular crowding is expected to have several significant effects on protein aggregation; the major effects will be those due to excluded volume and increased viscosity. In this report we summarize data demonstrating that macromolecular crowding may lead to a dramatic acceleration in the rate of protein aggregation and formation of amyloid fibrils, using the protein alpha-synuclein. The aggregation of alpha-synuclein has been implicated as a critical factor in development of Parkinson's disease. Various types of polymers, from neutral polyethylene glycols and polysaccharides (Ficolls, dextrans) to inert proteins, are shown to accelerate alpha-synuclein fibrillation. The stimulation of fibrillation increases with increasing length of polymer, as well as increasing polymer concentration. At lower polymer concentrations (typically up to approximately 100 mg/ml) the major effect is ascribed to excluded volume, whereas at higher polymer concentrations evidence of opposing viscosity effects become apparent. Pesticides and metals, which are linked to increased risk of Parkinson's disease by epidemiological studies, are shown to accelerate alpha-synuclein fibrillation under conditions of molecular crowding.  相似文献   

9.
A novel computational approach to the structural analysis of ordered beta-aggregation is presented and validated on three known amyloidogenic polypeptides. The strategy is based on the decomposition of the sequence into overlapping stretches and equilibrium implicit solvent molecular dynamics (MD) simulations of an oligomeric system for each stretch. The structural stability of the in-register parallel aggregates sampled in the implicit solvent runs is further evaluated using explicit water simulations for a subset of the stretches. The beta-aggregation propensity along the sequence of the Alzheimer's amyloid-beta peptide (Abeta(42)) is found to be highly heterogeneous with a maximum in the segment V(12)HHQKLVFFAE(22) and minima at S(8)G(9), G(25)S(26), G(29)A(30), and G(38)V(39), which are turn-like segments. The simulation results suggest that these sites may play a crucial role in determining the aggregation tendency and the fibrillar structure of Abeta(42). Similar findings are obtained for the human amylin, a 37-residue peptide that displays a maximal beta-aggregation propensity at Q(10)RLANFLVHSSNN(22) and two turn-like sites at G(24)A(25) and G(33)S(34). In the third application, the MD approach is used to identify beta-aggregation "hot-spots" within the N-terminal domain of the yeast prion Ure2p (Ure2p(1-94)) and to design a double-point mutant (Ure2p-N4748S(1-94)) with lower beta-aggregation propensity. The change in the aggregation propensity of Ure2p-N4748S(1-94) is verified in vitro using the thioflavin T binding assay.  相似文献   

10.
Techniques to study amyloid fibril formation in vitro   总被引:2,自引:0,他引:2  
Amyloid fibrils are ordered aggregates of peptides or proteins that are fibrillar in structure and contribute to the complications of many diseases (e.g., type 2 diabetes mellitus, Alzheimer's disease, and primary systemic amyloidosis). These fibrils can also be prepared in vitro and there are three criteria that define a protein aggregate as an amyloid fibril: green birefringence upon staining with Congo Red, fibrillar morphology, and beta-sheet secondary structure. The purpose of this review is to describe the techniques used to study amyloid fibril formation in vitro, address common errors in the collection and interpretation of data, and open a discussion for a critical review of the criteria currently used to classify a protein aggregate as an amyloid fibril.  相似文献   

11.
Movement and positioning of melanophore pigment organelles depend on microtubule- and actin-dependent motors, but the regulation of these forces are poorly understood. Here, we describe a cell free and fixed time motility assay for the study of the regulation of microtubule-dependent pigment organelle positioning in vitro. The assay involves introduction of microtubule-asters assembled in clam oocyte lysates into lysates prepared from Fundulus heteroclitus melanophores with either aggregated or dispersed pigment. When asters were introduced in lysates prepared from melanophores with dispersed pigment, pigment organelles bound astral microtubules and were evenly distributed throughout the aster. In contrast, when asters were introduced into lysates prepared from melanophores with aggregated pigment, pigment organelles accumulated around the centrosome, mimicking a pigment aggregate. The addition of anti-dynein intermediate chain antibody (m74-1), previously shown to interfere with binding of dynactin to dynein and thereby causing detachment of dynein from organelles, blocked the ATP-dependent aggregation of pigment in vitro and induced a depletion of pigment from the centrosomal area. The results show that dynein is essential for pigment aggregation and involved in maintenance of evenly dispersed pigment in vitro, analogous to cellular evidence, and suggest a possible role for dynactin in these processes as well.  相似文献   

12.
The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting aggregates defined by EM and FTIR spectroscopy. Compact partially folded states, favoured by the addition of anions, are prone to precipitate rapidly into amorphous species, whilst well-defined fibrillar structures are formed slowly from more expanded denatured states. Kinetic data obtained by a variety of techniques show a clear lag phase in the formation of amyloid fibrils. NMR spectroscopy shows no evidence for a significant population of small oligomers in solution during or after this lag phase. EM and FTIR indicate the presence of amorphous aggregates (protofibrils) rich in beta-structure after the lag phase but prior to the development of well-defined amyloid fibrils. These observations strongly suggest a nucleation and growth mechanism for the formation of the ordered aggregates. The morphologies of the fibrillar structures were found to be highly sensitive to the pH at which the protein solutions are incubated. This can be attributed to the effect of small perturbations in the electrostatic interactions that stabilise the contacts between the protofilaments forming the amyloid fibrils. Moreover, different hydrogen bonding patterns related to the various aggregate morphologies can be distinguished by FTIR analysis.  相似文献   

13.
Severe conditions and lack of cure for many amyloid diseases make it highly desired to understand the underlying principles of formation of fibrillar aggregates (amyloid). Here, amyloid formation from peptides was studied using Monte Carlo simulations. Systems of 20, 50, 100, 200 or 500 hexapeptides were simulated. Association kinetics were modeled equal for fibrillar and other (inter- and intra-peptide) contacts and assumed to be faster the lower the effective contact order, which represents the distance in space. Attempts to form contacts were thus accepted with higher probability the lower the effective contact order, whereby formation of new contacts next to preexisting ones is favored by shorter physical separation. Kinetic discrimination was invoked by using two different life-times for formed contacts. Contacts within amyloid fibrils were assumed to have on average longer life-time than other contacts. We find that the model produces fibrillation kinetics with a distinct lag phase, and that the fibrillar contacts need to dissociate on average 5-20 times slower than all other contacts for the fibrillar structure to dominate at equilibrium. Analysis of the species distribution along the aggregation process shows that no other intermediate is ever more populated than the dimer. Instead of a single nucleation event there is a concomitant increase in average aggregate size over the whole system, and the occurrence of multiple parallel processes makes the process more reproducible the larger the simulated system. The sigmoidal shape of the aggregation curves arises from cooperativity among multiple interactions within each pair of peptides in a fibril. A governing factor is the increasing probability as the aggregation process proceeds of neighboring reinforcing contacts. The results explain the very strong bias towards cross β-sheet fibrils in which the possibilities for cooperativity among interactions involving neighboring residues and the repetitive use of optimal side-chain interactions are explored at maximum.  相似文献   

14.
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases.  相似文献   

15.
Kinetics of human insulin aggregation has been studied at pH 1.6 and 60 degrees C, when amyloid fibrils are formed. We developed a novel approach based on the analysis of scattered light intensity distribution, which allows distinguishing between small and large size aggregates. By this method, we observed an exponential growth of fibrillar aggregates implying a heterogeneous aggregation mechanism. Also, the apparent lag time observed, correlated with the major increase of thioflavin T fluorescence, has been assigned to the onset of large size cluster formation.  相似文献   

16.
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.  相似文献   

17.
Two synthetic peptides corresponding to the reported 28-residue sequence of Alzheimer's Disease beta-protein (SP28) and to residues 12-28 (SP17) were used to form fibrils in vitro. Synthetic fibrils bound Congo Red and closely resembled amyloid fibrils isolated from leptomeninges and senile plaques of Alzheimer's brain by electron microscopy. A polyclonal antiserum to SP28 specifically decorated both synthetic and native amyloid by colloidal gold immunoelectron microscopy. Amyloid fibrils isolated from tissue were insoluble on SDS-Polyacrylamide gels, and tended to aggregate while synthetic amyloid fibrils were completely solubilized, releasing only monomers of SP28 and SP17. Anti-SP28 immunostained cerebrovascular and plaque core amyloid, but not neurofibrillary tangles, in tissue section. Western blot analysis showed that anti-SP28 reacted with a 4 kDa band released from amyloid core-enriched preparations and leptomeninges. By contrast, a 16 kDa band corresponding to the tetramer of beta-protein was not recognized. These data suggest that as little as a 17 residue sequence of beta-protein may be required to form fibrils and that the complete sequence of the 4 kDa beta-protein may be important in determining insolubility and the formation of intermediate size polymers.  相似文献   

18.
Beta(2)-microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)m that has been linked to cancer and inflammation and may be present in the circulation of dialysis patients. This beta(2)m variant, DeltaK58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)m. Using amide hydrogen/deuterium exchange monitored by mass spectrometry, we show that DeltaK58-beta(2)m has increased unfolding rates compared to wt-beta(2)m and that unfolding is highly temperature dependent. The unfolding rate is 1 order of magnitude faster in DeltaK58-beta(2)m than in wt-beta(2)m, and at 37 degrees C the half-time for unfolding is more than 170-fold faster than at 15 degrees C. Conformational changes are also reflected by a very prominent Congo red binding of DeltaK58-beta(2)m at 37 degrees C, by the evolution of thioflavin T fluorescence, and by changes in intrinsic fluorescence. After a few days at 37 degrees C, in contrast to wt-beta(2)m, DeltaK58-beta(2)m forms well-defined high molecular weight aggregates that are detected by size-exclusion chromatography. Atomic force microscopy after seeding with amyloid-beta(2)m fibrils under conditions that induce minimal fibrillation in wt-beta(2)m shows extensive amyloid fibrillation in DeltaK58-beta(2)m samples. The results highlight the instability and amyloidogenicity under near physiological conditions of a slightly modified beta(2)m variant generated by limited proteolysis and illustrate stages of amyloid formation from early conformational variants to overt fibrillation.  相似文献   

19.
20.
BackgroundCopper is an essential trace element required for the proper functioning of various enzymes present in the central nervous system. An imbalance in the copper homeostasis results in the pathology of various neurodegenerative disorders including Parkinson’s Disease. Hence, residue specific interaction of Cu2+ to α-Syn along with the familial mutants H50Q and G51D needs to be studied in detail.MethodsWe investigated the residue specific mapping of Cu2+ binding sites and binding strength using solution-state NMR and ITC respectively. The aggregation kinetics, secondary structural changes, and morphology of the formed fibrils in the presence and absence of Cu2+ were studied using fluorescence, CD, and AFM respectively.ResultsCopper binding to α-Syn takes place at three different sites with a higher affinity for the region 48-53. While one of the sites got abolished in the case of H50Q, the mutant G51D showed a binding pattern similar to WT. The aggregation kinetics of these proteins in the presence of Cu2+ showed an enhanced rate of fibril formation with a pronounced effect for G51D.ConclusionCu2+ binding results in the destabilization of long-range tertiary interactions in α-Syn leading to the exposure of highly amyloidogenic NAC region which results in the increased rate of fibril formation. Although the residues 48-53 have a stronger affinity for Cu2+ in case of WT and G51D, the binding is not responsible for enhancing the rate of fibril formation in case of H50Q.General SignificanceThese findings will help in the better understanding of Cu2+ catalyzed aggregation of synucleins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号