首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper describes a GC–MS method (SIM mode) for the analysis of perfluorooctyl bromide (perflubron, I) in rat blood. The chromatographic separation was performed by injection in the split mode using a CP-select 624 CB capillary column. Following destruction of the emulsion by addition of ethanol, the analytical procedure involves a liquid–liquid extraction with 1,1,2-trichlorotrifluoroethane. The bis(F-butyl)ethene (II) was used as internal standard. Observed retention times were 3.22 min for I and 2.32 min for II. Two calibration curves were used; linear detection responses were obtained for concentrations ranging from 0.009 to 0.9 mg/ml and from 0.9 to 13.5 mg/ml. The extraction efficiency averaged 50% for I and 93% for II. Precision ranged from 0.7 to 14%, and accuracy was between 91 and 109%. The limit of quantification was 9 μg/ml. The method validation results indicate that the performance characteristics of the method fulfilled the requirements for assay method for use in pharmacokinetic studies.  相似文献   

2.
Methods for the determination of a semi-synthetic cyclic hexapeptide (I, MK-0991) in human plasma based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection using pneumatically assisted electrospray (ion spray, ISP) and turbo ion spray (TISP) interfaces were developed. Drug and internal standard (II, an isostere of I) were isolated from plasma by solid-phase extraction (SPE). The eluent from SPE was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The use of ISP, TISP and heated nebulizer (HN) interfaces as sample introduction systems were evaluated and showed that the heated nebulizer was not adequate for analysis due to thermal instability and/or adsorption of I and II to glass surfaces of the interface. Compounds I and II were chromatographed on a wide pore (300 Å), 150×4.6 mm C8 analytical column, and the HPLC flow-rate of 1.2 ml/min was split 1:20 prior to introduction to the ISP or TISP interface of the mass spectrometric system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer operated in selected reaction monitoring mode (SRM). The precursor→product ion combinations of m/z 1093.7→1033.6 and 1094.7→1033.6 were used to quantify I and II, respectively, after chromatographic separation of the analytes. The assay was validated in the concentration range of 10–1000 ng/ml using ISP, and 2.5–500 ng/ml of plasma using TISP with good precision and adequate accuracy. The effects of HPLC mobile-phase components on the ionization efficiency and sensitivity of detection in the positive ionization mode, the evaluation of the matrix effect, and limitations in sensitivity of detection of I due to the formation of multiply charged species are presented.  相似文献   

3.
A sensitive and specific assay of human plasma for the determination of (5α,7β,16β)-16[(4-chlorophenyl)oxy]-4,7-dimethyl-4-aza-andronstan-3-one (I), a selective inhibitor of human type 1 5α-reductase, has been developed. The method is based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection. The analyte (I) and internal standard, Proscar (II), were isolated from the basified biological matrix using a liquid–liquid extraction with methyl-tert.-butyl ether (MTBE). The organic extract was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer using a heated nebulizer interface. Multiple reaction monitoring using the precursor→product ion combinations of m/z 430→114 and 373→305 was used to quantify I and internal standard (II), respectively. The assay was validated in the concentration range of 0.5 to 500 ng/ml in human plasma. The precision of the assay, expressed as coefficient of variation (C.V.), was less than 7% over the entire concentration range, with adequate assay specificity and accuracy. The HPLC–MS–MS method provided sufficient sensitivity to completely map the 24 h pharmacokinetic time-course following a single 0.5 mg dose of I.  相似文献   

4.
A sample preparation method for mass chromatographic detection of doping drugs from horse plasma is described. Bond Elut Certify (1 g/6 ml) is used for the extraction of 4 ml of horse plasma. Fractionation is performed with 6 ml of CHCl3–Me2CO (8:2) and 5 ml of 1% TEA–MeOH according to its property. Simple and effective clean-up based on non-aqueous partitioning is adopted to remove co-eluted contaminants in both acid and basic fractions. Two kinds of 1-(N,N-diisopropylamino)-n-alkanes are co-injected with the sample into the GC–MS system for the calculation of the retention index. Total recoveries of 107 drugs are examined. Some data of post administration plasma are presented. This procedure achieves sufficient recoveries and clean extracts for GC–MS analysis. The method is able to detect ng/ml drug levels in horse plasma.  相似文献   

5.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

6.
A simple, sensitive and specific liquid chromatography–electrospray tandem mass spectrometry (LC–MS–MS) method for the determination of clindamycin (I) was developed. Both I and verapamil (II, internal standard) were analyzed using a C18 column with a mobile phase of 80% acetonitrile–0.01% trifluoroacetic acid. Column eluents were monitored by electrospray tandem mass spectrometry. Multiple reaction monitoring (MRM) using the parent to daughter combinations of m/z 425→126 and 455→165 was used to quantitate I. A limit of quantitation of 0.0500 μg/ml was found. The assay exhibited a linear dynamic range of 0.0500–20.0 μg/ml and gave a correlation coefficient (r2) of 0.998 or better. The chromatographic run time was approximately 2 min. The intra-batch precision and accuracy of the quality controls (QCs, 0.0500, 0.150, 1.50, 15.0 and 20.0 μg/ml) were characterized by coefficients of variation (CVs) of 5.13 to 13.7% and relative errors (REs) of −4.34 to 4.58%, respectively. The inter-batch precision and accuracy of the QCs were characterized by CVs of 4.35 to 8.32% and REs of −10.8 to −4.17%, respectively. The method has successfully been applied to the analysis of samples taken up to 12 h after oral administration of 300 mg of I in healthy volunteers.  相似文献   

7.
A selective gas–liquid chromatographic method with mass spectrometry (GC–MS) for the simultaneous confirmation and quantification of ephedrine, pseudo-ephedrine, nor-ephedrine, nor-pseudoephedrine, which are pairs of diastereoisomeric sympathomimetic amines, and methyl-ephedrine was developed for doping control analysis in urine samples. O-Trimethylsilylated and N-mono-trifluoroacetylated derivatives of ephedrines — one derivative was formed for each ephedrine — were prepared and analyzed by GC–MS, after alkaline extraction of urine and evaporation of the organic phase, using d3-ephedrine as internal standard. Calibration curves, with r2>0.98, ranged from 3.0 to 50 μg/ml depending on the analyte. Validation data (specificity, % RSD, accuracy, and recovery) are also presented.  相似文献   

8.
Semi-automated 96-well plate solid-phase extraction (SPE) was used for sample preparation of fluprostenol, a prostaglandin analog, in rat plasma prior to detection by gas chromatography–negative chemical ionization tandem mass spectrometry (GC–NCI-MS–MS). A liquid handling system was utilized for all aspects of sample handling prior to SPE including transferring of samples into a 96-well format, preparation of standards as well as addition of internal standard to standards, quality control samples and study samples. SPE was performed in a 96-well plate format using octadecylsilane packing and the effluent from the SPE was dried in a custom-made 96-well apparatus. The sample residue was derivatized sequentially with pentafluorobenzylbromide followed by N-methyl-N-trimethylsilyltrifluoroacetamide. The derivatized sample was then analyzed using GC–NCI-MS–MS. The dynamic range for the method was from 7 to 5800 pg/ml with a 0.1-ml plasma sample. The methodology was evaluated over a 4-day period and demonstrated an accuracy of 90–106% with a precision of 2.4–12.9%.  相似文献   

9.
A method was developed for the determination of gemifloxacin (I) in human plasma using high-performance liquid chromatography–tandem mass spectrometry. Prior to analysis, the protein in plasma samples was precipitated with acetonitrile containing [13C2H3] gemifloxacin (II) to act as an internal standard. The supernatant was injected onto a PLRP-S column without any further clean-up. The mass spectrometer was operated in positive ion mode, employing a heat assisted nebulisation, electrospray interface. Ions were detected in multiple reaction monitoring (MRM) mode. The assay requires 50 μl of plasma and is precise and accurate within the range 10–5000 ng/ml. The average within-run and between-run coefficients of variation were <11% at 10 ng/ml and greater concentrations. The average accuracy of validation standards was generally within ±7% of the nominal concentration. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can safely be stored for at least 6 months at −20°C. The method proved very robust and was successfully applied to the analysis of clinical samples from patients dosed with gemifloxacin.  相似文献   

10.
The characteristics of the mass spectra of vitamin D3 related compounds were investigated by GC–MS and LC–MS using 22-oxacalcitriol (OCT), an analog of 1,25-dihydroxyvitamin D3, and related compounds. Fragmentation during GC–MS (electron impact ionization) of TMS-derivatives of OCT and the postulated metabolites gave useful structural information concerning the vitamin D3-skeleton and its side-chain, especially with respect to the oxidation positions of metabolites. In contrast, few fragment ions were observed in LC–MS (atmospheric pressure chemical ionization), showing that LC–MS gave poor structural information, except for molecular mass. However, when comparing the signal-to-noise ratio (S/N) observed during GC–MS and LC–MS analysis for OCT in plasma extracts, the S/N in LC–MS was over ten-times greater than in GC–MS, possibly due to the low recovery on derivatization and thermal-isomerization in GC–MS. Furthermore, both the GC–MS and the LC–MS allowed the analysis of many postulated metabolites in a single injection without any prior isolation of target metabolites from biological fluids by LC. These results suggest that GC–MS and LC–MS analysis for vitamin D3 related compounds such as OCT each have unique and distinct advantages. Therefore, the complementary use of both techniques enables the rapid and detailed characterization of vitamin D3 related compounds.  相似文献   

11.
A system of an automatic sample preparation procedure followed by on-line injection of the sample extract into a gas chromatograph-mass spectrometer (GC–MS) was developed for the simultaneous analysis of seven barbiturates in human serum. A sample clean-up was performed by a solid-phase extraction (SPE) on a C18 disposable cartridge. A SPE cartridge was preconditioned with methanol and 0.1 M phosphate buffer. After loading 1.5 ml of a diluted serum sample into the SPE cartridge, the cartridge was washed with 2.5 ml of methanol–water (1:9, v/v). Barbiturates were eluted with 1.0 ml of chloroform–isopropanol (3:1, v/v) from the cartridge. The eluate (1 μl) was injected into the GC–MS. The calibration curves, using an internal standard method, demonstrated a good linearity throughout the concentration range from 0.1 to 10 μg ml−1 for all barbiturates extracted. The proposed method was applied to 27 clinical serum samples from three patients who were administrated secobarbital.  相似文献   

12.
Metabolites of nandrolone were determined in the urine of several sportsmen, sedentary and post-menopausal women by capillary gas chromatography–mass spectrometry quadrupole (GC–MS) and capillary gas chromatography mass–mass spectrometry ion trap (GC–MS–MS) methods. The method employed was GC–EI-MS with 17α-methyltestosterone as internal standard with ethyl ether extraction prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405 and 420 for the nandrolone metabolites, and 418 and 403 for nandrolone derivative. Recovery for nandrolone, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) was 97.20, 94.17 and 95.54%, respectively. Detection limits for nandrolone, 19-NA and 19-NE were 0.03, 0.01 and 0.06 ng/ml. Metabolites of nandrolone (19-NA and 19-NE) were found in 12.5% (n=40) of sportsmen and 40% (n=10) of post-menopausal women.  相似文献   

13.
Certain naturally occurring isoflavonoids have been shown to inhibit protein-tyrosine kinases, and this has led to investigations of ring-modified structural analogs. Most recently, 2-(3-methyl-4-aminophenyl)-benzothiazole (MAB: NSC 674495) was shown to possess significant activity against certain breast cell cancer lines in vitro and in vivo. Our efforts thus focussed on developing a simple and sensitive method for quantitating MAB in plasma using GC–MS. The GC–MS assay was found to be linear over the range of 0.050 to 5.0 μg/ml, and was applied to monitor the plasma concentration of MAB in a rat dosed with 25 mg/kg as a 1 min intravenous infusion. Plasma was collected at intervals from 3 through 180 min, and concentrations of MAB were determined. Non-linear regression analysis of the plasma concentration-time data revealed that levels declined from a maximum at 3 min of 18 μg/ml to 1 μg/ml at 3 h in a biphasic manner. In another investigation, significant plasma concentrations of a major metabolite was detected and determined to be mono-N-acetylated MAB.  相似文献   

14.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

15.
An analytical procedure to screen butorphanol in horse race urine using ELISA kits and its confirmation by GC–MS is described. Urine samples (5 ml) were subjected to enzymatic hydrolysis and extracted by solid-phase extraction. The residues were then evaporated, derivatized and injected into the GC–MS system. The ELISA test (20 μl of sample) was able to detect butorphanol up to 104 h after the intramuscular administration of 8 mg of Torbugesic, and the GC–MS method detected the drug up to 24 h in FULL SCAN or 31 h in the SIM mode. Validation of the GC–MS method in the SIM mode using nalbuphine as internal standard included linearity studies (10–250 ng/ml), recovery (±100%), intra-assay (4.1–14.9%) and inter-assay (9.3–45.1%) precision, stability (10 days), limit of detection (10 ng/ml) and limit of quantitation (20 ng/ml).  相似文献   

16.
An HPLC assay with tandem mass spectrometric detection in the positive-ion Turbo-Ion-Spray (TISP) mode for the fast and sensitive determination of perifosine ((I), D-21266) in human plasma was developed, utilising the structural analogue, miltefosine ((II), D-18506), as internal standard. Automated solid-phase extraction of diluted plasma samples, based on 250-μl plasma aliquots, at pH 6.5, allowed a reliable quantification of perifosine down to 4 ng/ml. Injection of 200 μl of plasma extracts onto a 100×3 mm normal-phase analytical column at a flow-rate of 0.5 ml/min provided retention-times of 2.4 and 2.1 min for perifosine (I) and the internal standard (II), respectively. The standard curves were linear from 4 to 2000 ng/ml using weighted linear regression analysis (1/Y2). The inter-assay and intra-assay accuracies for the calibration standards were within +0.9% and −0.2%, exhibiting precisions (C.V.) of ±6.5 and ±7.3%, respectively. Up to 100 unknowns may be analysed each 24 h per analyst.  相似文献   

17.
Headspace solid-phase microextraction (HS-SPME) was utilized for the determination of three dichlorobenzene isomers (DCBs) in human blood. In the headspace at 30°C, DCBs were absorbed for 15 min by a 100-μm polydimethylsiloxane (PDMS) fiber. They were then analyzed by capillary column gas chromatography–mass spectrometry (GC–MS). By setting the initial column oven temperature at 20°C, the three isomers were resolved at the baseline level. p-Xylene-d10 was used as the internal standard (I.S.). For quantitation, the molecular ion at m/z 146 for each isomer and the molecular ion at m/z 116 for I.S. were selected. For day-to-day precision, relative standard deviations in the range 3.2–10.7% were found at blood concentrations of 1.0 and 10 μg/ml. Each compound was detectable at a level of at least 0.02 μg per 1 g of whole blood (by full mass scanning). HS-SPME–GC–MS, when performed at relatively low temperatures, was found to be feasible in toxicological laboratories. Using this method, the plasma levels of one patient who had drunk a pesticide-like material were measured.  相似文献   

18.
In order to study the disposition of dimethylamphetamine (DMAP) and its metabolites, DMAP N-oxide, methamphetamine (MA) and amphetamine (AP), from plasma to hair in rats, a simultaneous determination method for these compounds in biological samples using gas chromatography–mass spectrometry with selected ion monitoring (GC–MS-SIM) was developed. As DMAP N-oxide partially degrades to DMAP and MA during GC–MS analysis, it was necessary to avoid conditions which co-extract the N-oxide in the sample preparation so as to assure no contribution of artifactual products from DMAP N-oxide in the detection of the other compounds. For confirmation of the satisfactory separation of DMAP N-oxide from the others, the internal standards used for quantification were labeled with different numbers of deuterium atoms. Determination of unchanged DMAP was performed without any derivatization, that of DMAP N-oxide was carried out after conversion into trifluoroacetyl-MA by reaction with trifluoroacetic anhydride, and MA and AP were quantified after trifluoroacetyl-derivatization.After intraperitoneal administration of DMAP HCl to pigmented hairy rats (5 mg kg−1 day−1, 10 days, n=3), concentrations of DMAP and its metabolites in urine, plasma and hair were measured by GC–MS-SIM. The area under the concentration versus time curves (AUCs) of DMAP, DMAP N-oxide, MA and AP in the plasma were 397.2±97.5, 279.7±68.3, 18.4±1.2 and 15.9±2.2 μg min ml−1, while their concentrations in the hair newly grown for 4 weeks after administration were 4.82±0.67. 0.45±0.09, 3.25±0.36 and 0.89±0.05 ng mg−1, respectively. This fact suggested that the incorporation tendency of DMAP N-oxide from plasma into hair was distinctly low in comparison with the other compounds.  相似文献   

19.
Three extraction procedures were developed for the quantitative determination of a carboxylic acid containing analyte (I) in human plasma by high-performance liquid chromatography (HPLC) with negative ion electrospray tandem mass spectrometry (MS–MS). The first procedure was based on the manual liquid–liquid extraction (LLE) of the acidified plasma samples with methyl tert.-butyl ether. The second procedure was based on the automation of the manual LLE procedure using 96-well collection plates and a robotic liquid handling system. The third approach was based on automated solid-phase extraction (SPE) using 96-well SPE plates and a robotic liquid handling system. A lower limit of quantitation of 50 pg/ml was achieved using all three extraction procedures. The total time required to prepare calibration curve standards, aliquot the standards and plasma samples, and process a total of 96 standards and samples by manual LLE was three-times longer than the time required for 96-well SPE or 96-well LLE (4 h, 50 min vs. 1 h, 43 min). Even more importantly, the time the bioanalyst physically spent on the 96-well LLE or 96-well SPE procedure was only a small fraction of the time spent on the manual LLE procedure (<10 min vs. 4 h, 10 min). It should be noted that the 96-well SPE procedure incorporated the two steps of evaporation of the eluates to dryness and subsequent reconstitution of the dried extract. The total time required for the 96-well SPE could be reduced by 50% if the eluates were injected directly, eliminating the drying and reconstitution steps, which is achievable when sensitivity is less of an issue.  相似文献   

20.
We established a method for the detection of free and total (free and bound) malondialdehyde (MDA) in human plasma samples after derivatisation with 2,4-dinitrophenylhydrazine (DNPH). Free MDA was prepared by perchloric acid deproteinisation whereas an alkaline hydrolysation step for 30 min at 60°C was introduced prior to protein precipitation for the determination of total MDA. Derivatisation was accomplished in 10 min at room temperature subsequently chromatographed by HPLC on a reversed-phase 3 μm C18 column with UV detection (310 nm). The detection limit was 25 pmol/ml for free and 0.3 nmol/ml for total MDA. The recovery of MDA added to different human plasma samples was 93.6% (n=11; RSD 7.1%) for the hydrolysation procedure. In samples from 12 healthy volunteers who underwent a hypoxic treatment (13% O2 for 6 h) we estimated a baseline value of total MDA of 2.16 nmol/ml (SD 0.29) (ambient air) with a significant increase to 2.92 (nmol/ml, SD 0.57; P=0.01) after the end of this physiological oxidative stress challenge. Plasma values of free MDA in these samples were close to our detection limit. The presented technique can easily performed with an isocratic HPLC apparatus and provides highly specific results for MDA as do sophisticated GC–MS methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号