首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biofilter inoculated with Arthrobacter sp. was applied to the simultaneous elimination of trimethylamine (TMA) and ammonia (NH3) from the exhaust air of swine waste storage pits. The results showed that the biofilter achieved average removal efficiencies of 96.8+/-2.5% and 97.2+/-2.3% for TMA and NH3, respectively. A near-neutral pH (7.3-7.4) was maintained due to the accumulation of acid metabolites and the adsorption of alkaline NH3. Low moisture demand, low pressure drop and high biofilm stability in the system were other advantages. After long-term operation, the bacterial community structure showed that at least twenty-five bands were explicitly detected by a denaturing gradient gel electrophoresis (DGGE) method. However, the inoculated Arthrobacter sp. still maintained a dominant population (>50%). Paracoccus denitrificans' presence in the biofilter could play an important role in oxidizing NH3 and reducing nitrite by heterotrophic nitrification and anaerobic denitrification.  相似文献   

2.
Control of 2-chlorophenol vapour emissions by a trickling biofilter   总被引:1,自引:0,他引:1  
This research work investigates the biodegradation of 2-chlorophenol vapours in a trickling biofilter packed with a ceramic material, and seeded with a pure strain of Pseudomonas pickettii. The process was tested at laboratory scale over 260 days of operation under varying loading conditions. More than 98% degradation efficiencies were achieved for loading rates up to 82.5gm(-3)h(-1). Process analysis, performed using data on 2-chlorophenol concentration profiles along the biofilter bed, shows that best biofilter performance (i.e. maximum degradation capacity and efficiency) can be obtained for a narrow range of operating conditions, which can be ensured by proper sizing of biofilter diameter and height.  相似文献   

3.
Packing material is a crucial component of a bioreactor as it is the microbial population's habitat. This study assessed potential improvements to current biofiltration processes by investigating use of a novel support medium. Biological activated carbon (BAC) with microorganisms growing on granular activated carbon can produce a novel medium in which both adsorption and biodegradation contribute to pollutants removal. Investigation of carbon characteristics demonstrated that BAC was an ideal packing medium for biofiltration. The application of the novel packing medium for gas mixture treatment was evaluated in a low pH biofilter. Results demonstrated that BAC biofilter obtained high removal efficiency for both H(2)S and toluene. The removal mechanisms of BAC were investigated after the biofilter operation and it demonstrated that the performance of the BAC system was mainly controlled by the additive contributions of two removal mechanisms - adsorption and biodegradation. This study also indicated the potential for simultaneous treatment of hydrogen sulfide and toluene at low pH condition.  相似文献   

4.
The effects of acclimatization of microbial populations, compound concentration, and media pH on the biodegradation of low concentration dichloromethane emissions in biofiltration systems was evaluated. Greater than 98% removal efficiency was achieved for dichloromethane at superficial velocities from 1 to 1.5 m(3)/m(3). min (reactor residence times of 1 and 0.7 min, respectively) and inlet concentrations of 3 and 50 ppm Although acclimatization of microbial populations to toluene occurred within 2 weeks of operation start-up, initial dichloromethane acclimatization took place over a period of 10 weeks. This period was shortened to 10 days when a laboratory grown consortium of dichloromethane degrading organism, isolated from a previously acclimatized column, was introduced into fresh biofilter media. The mixed culture consisted to 12 members, which together were able to degrade dichloromethane at concentrations up to 500 mg/L. Only one member of the consortium was able to degrade dichloromethane were sustained for more than 4 months in a biofilter column receiving an inlet gas stream with 3 ppm(v) of dichloromethane acidification of the column and resulting decline in performance occurred when a 50-ppm(v) inlet concentration was used. A biofilm model incorporating first order biodegradation kinetics provided a good fit to observed concentration profiles, and may prove to be a useful tool for designing biofiltration systems for low concentration VOC emissions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The performance of a biofilter packed with Active Carbon (AC) was evaluated. The effluent (alcohol, ketones, esters, aromatic and chlorinated compounds) treated was a representative mixture of most common industrial emissions. To achieve a better knowledge of multicomponent adsorption mechanisms, and to underline the interest of inoculating AC, a control abiotic humidified filter had been operated in the same conditions as the biofilter. For a load of 110 g VOC m(-3) AC h(-1), after 55 days of operation, the removal efficiency was higher in the biotic than in the abiotic filter (85% vs 55%, respectively). Moreover, in the biofilter, at steady state, the elimination of all compounds was almost complete except for chlorinated compounds and p-xylene (removal efficiency of 25% and 64%, respectively). The microbial colonization of AC involved a decrease of the adsorption sites accessibility and enhanced the treatment of VOCs (volatile organic compounds) having a lower affinity for activated carbon. Moreover, while aromatic compounds and MIBK were eliminated along the overall height of the biofilter, pollutants with reduced affinity for AC, such as methanol, acetone, and halogenated compounds were only treated on the second half of the reactor. Thus, the affinity for activated carbon was an important parameter controlling the biodegradation process. Nevertheless, the use of AC as packing material in biofilters treating complex mixtures of VOCs is limited. Actually, similar removal efficiency could be reached, in the same conditions, for a biofilter packed with granular peat. Furthermore, for the biofilter packed with AC, the column height necessary to remove biodegradable compounds, with reduced affinity for the support, was important.  相似文献   

6.
Biofiltration of ethylbenzene vapours: influence of the packing material   总被引:3,自引:0,他引:3  
In order to investigate suitable packing materials, a soil amendment composed of granular high mineralized peat (35% organic content) locally available has been evaluated as carrier material for biofiltration of volatile organic compounds in air by comparison with a fibrous peat (95% organic content). Both supports were tested to eliminate ethylbenzene from air streams in laboratory-scale reactors inoculated with a two-month conditioned culture. In pseudo-steady state operation, experiments at various ethylbenzene inlet loads (ILs) were carried out. Maximum elimination capacity of about 120 g m(-3) h(-1) for an IL of 135 g m(-3) h(-1) was obtained for the fibrous peat. The soil amendment reactor achieved a maximum elimination capacity of about 45 g m(-3) h(-1) for an inlet load of 55 g m(-3) h(-1). Ottengraf-van den Oever model was applied to the prediction of the performance of both biofilters. The influence of gas flow rate was also studied: the fibrous peat reactor kept near complete removal efficiency for empty bed residence times greater than 1 min. For the soil amendment reactor, an empty bed residence time greater than 2 min was needed to achieve adequate removal efficiency. Concentration profiles along the biofilter were also compared: elimination occurred in the whole fibrous peat biofilter, while in the soil amendment reactor the biodegradation only occurred in the first 65% part of the biofilter. Results indicated that soil amendment material, previously selected to increase the organic content, would have potential application as biofilter carrier to treat moderate VOC inlet loads.  相似文献   

7.

The objectives of this study were to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the removal efficiency of TCE or PCE. For the enhanced biofiltration, a biodegradable nonionic surfactant was added to biofilters. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE.

The removal efficiency of gaseous TCE was 100% at a residence time of 7?min and its average inlet concentration of 85?ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7?min and its average concentrations of 47–84?ppm. It was found that adsorption by GAC and absorption by influent nutrient solution were a minor or negligible mechanism for TCE and PCE removal in the activated carbon biofilters. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5–50?mg/l. Surfactant concentrations of 5–15?mg/l were found to be an optimal dosage in the biofilter operation for avoiding significant residual in the effluent from biofilters.

  相似文献   

8.
The removal of hydrophobic pollutants in biofilters is often limited by gas liquid mass transfer to the biotic aqueous phase where biodegradation occurs. It has been proposed that the use of fungi may improve their removal efficiency. To confirm this, the uptake of hexane vapors was investigated in 2.6-L perlite-packed biofilters, inoculated with a mixed culture containing bacteria and fungi, which were operated under neutral or acid conditions. For a hexane inlet load of around 140 g.m-3.h-1, elimination capacities (EC) of 60 and 100 g.m-3.h-1 were respectively reached with the neutral and acid systems. Increasing the inlet hexane load showed that the maximum EC obtained in the acid biofilter (150 g.m-3.h-1) was twice greater than in the neutral filter. The addition of bacterial inhibitors had no significant effect on EC in the acid system. The biomass in the acid biofilter was 187 mg.g-1 (dry perlite) without an important pressure drop (26.5 mm of water.m-1reactor). The greater efficiency obtained with the acid biofilter can be related to the hydrophobic aerial hyphae which are in direct contact with the gas and can absorb the hydrophobic compounds faster than the flat bacterial biofilms. Two fungi were isolated from the acid biofilter and were identified as Cladosporium and Fusarium spp. Hexane EC of 40 g.m-3.h-1 for Cladosporium sp. and 50 g.m-3.h-1 for Fusarium sp. were obtained in short time experiments in small biofilters (0.230 L). A biomass content around 30 mg.g-1 (dry perlite) showed the potential for hexane biofiltration of the strains.  相似文献   

9.
Burkholderia cepacia PR123(TOM23C), expressing constitutively the TCE-degrading enzyme toluene ortho-monooxygenase (Tom), was immobilized on SIRANtrade mark glass beads in a biofilter for the degradation and mineralization of gas-phase trichloroethylene (TCE). To interpret the experimental results, a mathematical model has been developed which includes axial dispersion, convection, film mass-transfer, and biodegradation coupled with deactivation of the TCE-degrading enzyme. Parameters used for numerical simulation were determined from either independent experiments or values reported in the literature. The model was compared with the experimental data, and there was good agreement between the predicted and measured TCE breakthrough curves. The simulations indicated that TCE degradation in the biofilter was not limited by mass transfer of TCE or oxygen from the gas phase to the liquid/biofilm phase (biodegradation limits), and predicts that improving the specific TCE degradation rates of bacteria will not significantly enhance long-term biofilter performance. The most important factors for prolonging the performance of biofilter are increasing the amount of active biomass and the transformation capacity (enhancing resistance to TCE metabolism). Copyright 1998 John Wiley & Sons, Inc.  相似文献   

10.
Compost liquor bioremediation using waste materials as biofiltration media   总被引:3,自引:0,他引:3  
Compost liquor results from the percolation of precipitation through composting waste; the release of liquids from high moisture content feedstocks; and as a result of runoff from hard surfaces and machinery. This research aimed to establish the potential for waste materials to act as media for low-cost compost liquor biofilters. Six types of potential biofilter media were packed into experimental biofilters (1 m long x 0.11 m diameter) and irrigated with compost liquor (organic loading rate of 0.6 kg/m3/d) for three months. The pH, BOD5, NH3/NH4+, and phytotoxicity of the effluent was monitored regularly. Natural, organic materials (oversize, compost and wood mulch) performed best, when compared to synthetic materials such as polystyrene packaging or inert materials such as broken brick. On average, the best media achieved 78% removal of both BOD5 and ammoniacal nitrogen during the study period. Although significant improvements in liquor quality were achieved, the effluent remained heavily polluted.  相似文献   

11.
NH3 removal by a full-scale biofilter with rockwool packing materials was studied by measuring the gases and potential nitrification and denitrification activities of those materials in order to improve the biofiltration technology used in livestock farms. The rockwool biofilter was a durable and effective system for removing NH3, which was varied with the turning of manure composts. Furthermore, NH3 could be treated in the absence of an extra increase in two greenhouse gases, N2O and CH4. Potential nitrification and denitrification activities of the packing materials were estimated to be 8.2-12.2 mg N, and 1.42-4.69 mg N/100 g dry samples per day, respectively. The results suggested that potential nitrification and denitrification activities would increase within the biofilter where substrates, NH3 or NO3(-), have accumulated as a result of its operation. However, since percolate water contained high concentrations of NH4(+) and NO3(-), further improvement is required by reducing nitrogenous compounds within both the biofilter and percolate water.  相似文献   

12.
Ammonia adsorption in a fixed bed of activated carbon   总被引:2,自引:0,他引:2  
The rise in atmospheric pollution caused by gases such as ammonia has led many researchers to conduct studies aimed at decreasing or treating the emissions of such polluting gases. The present work attempted to study the adsorption of ammonia in the fixed bed of activated carbon as a means to treat its emissions. The effects of the initial concentration of ammonia (C0) and of the bed temperature (TL) on the adsorption of ammonia by the activated carbon were also considered. Adsorption capacity of activated carbon was determined using data from the breakthrough curves and from a balance of mass in the bed. Adsorption capacities were obtained employing the Langmuir and Freudlich isotherms. The results showed that within the NH3 concentration range of 600-2400 ppm, adsorption capacity varied from 0.6 to 1.8 mg NH3/g carbon at 40 degrees C, from 0.2 to 0.7 mg NH3/g carbon at 80 degrees C and from 0.15 to 0.35 mg NH3/g carbon at 120 degrees C. These numbers highlight the tendency toward a lower adsorption capacity with the decrease in temperature. As to mass of the bed, this latter variable had no significant influence over adsorption capacity.  相似文献   

13.
A method is described to estimate the biodegradation potential of soluble, insoluble, and unknown organic chemicals. The method consists of two stages: (i) generation of a microbial inoculum in a bench scale semicontinuous activated sludge system during which microorganisms are acclimated to test material and the removal of dissolved organic carbon is monitored and (ii) biodegradability testing (CO2 evolution) in a defined minimal medium containing the test material as the sole carbon and energy source and a dilute bacterial inoculum obtained from the supernatant of homogenized activated sludge generated in the semicontinuous activated sludge system. Removal and biodegradation are measured using nonspecific methods, at initial concentrations of 5 to 10 mg of dissolved organic carbon per liter. Biodegradability data are accurately described by a nonlinear computer model which allows the rate and extent of biodegradation for different compounds to be compared and statistically examined. The evaluation of data generated in the combined removability-biodegradability system allows the biodegradation potential of a variety of xenobiotic organic chemicals to be estimated.  相似文献   

14.
After measuring toluene adsorption (15.7 mg-toluene/g-material), water holding capacity (18.5%), organic content (53.8%), specific surface area (18.1 m2/g-material), and microbial attachment, crab shells were chosen as the main packing material for a biofilter design. The crab shells, cheap and abundant in the Gangneung area, also have relatively rigid structure, low density, and ability to neutralize acids generated during mineralization of toluene. Since towel scraps have water holding capacity as high as 301.2%, 10% of the total packing was supplemented with them to compensate for low water holding capacity of the crab shells. The biofilter fed with defined chemical medium under 0.8∼1.3 mg/L of inlet toluene concentration and 18 seconds of residence time showed satisfactory removal efficiency of over 97% and 72.8 g/h·m3 of removal capacity. For the purpose of deceasing operation costs, leaf mold solution was tried as an alternative nutrient instead of a defined chemical medium. The removal efficiency and removal capacity were 85% and 56.3 g/h·m3, respectively, using the same inlet toluene concentration and residence time. This research shows the possibility of recycling crab shell waste as packing material for biofilter. In addition, leaf mold was able to serve as an alternative nutrient, which remarkably decreased the operating cost of the biofilter.  相似文献   

15.
Gao P  Liu ZH  Xue G  Han B  Zhou MH 《Bioresource technology》2011,102(3):3645-3648
Effects of different pretreatment protocols in (NH(4))(2)HPO(4) activation of rice straw on porous activated carbon evolution were evaluated. The pore structure, morphology and surface chemistry of obtained activated carbons were investigated by nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that pretreatment combining impregnation with (NH(4))(2)HPO(4) and preoxidation could significantly affect the physicochemical properties of prepared activated carbons. The apparent surface area and total pore volume as high as 1154 m(2)/g and 0.670 cm(3)/g were obtained respectively, when combined process of impregnation followed by preoxidation at 200°C and activation at 700°C was carried out. Meanwhile, the activated carbon yield and maximum methylene blue adsorption capacity up to 41.14% and 129.5 mg/g were achieved, respectively. The results exhibited that (NH(4))(2)HPO(4) could be an effective activating agent for producing activated carbons from rice straw.  相似文献   

16.
AIMS: To investigate the relationships between the operation of the volatile organic compound (VOC) removal biofilter and the structure of microbial communities, and to study the impact on degradation activities and the structuring of microbial communities of biofilter malfunctions related to the qualitative composition of the polluted air. METHODS AND RESULTS: A microbiological study and a measurement of biodegradation activities were simultaneously carried out on two identical peat-packed columns, seeded with two different inocula, treating polluted air containing 11 VOCs. For both reactors, the spatial structure of the microbial communities was investigated by means of single-strand conformation polymorphism (SSCP) analysis. For both reactors, stratification of degradation activities in function of depth was observed. Oxygenated compounds were removed at the top of the column and aromatics at the bottom. Comparison of SSCP patterns clearly showed a shift in community structure in function of depth inside both biofilters. This distribution of biodegradation activities correlates with the spatialization of microbial density and diversity. Although the operating conditions of both reactors were identical and the biodegradation activities similar, the composition of microflora differed for biofilters A and B. Subdivision of biofilter B into two independent parts supplied with polluted air containing the complex VOC mixture showed that the microflora having colonized the bottom of biofilter B retained their potential for degrading oxygenated compounds. CONCLUSIONS: This work highlights the spatialization of biodegradation functions in a biofilter treating a complex mixture of VOCs. This distribution of biodegradation activities correlates with the spatialization of microbial density and diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: This vertical structure of microbial communities must be taken into consideration when dealing with the malfunctioning of bioreactors. These results are also useful information about changes in microbial communities following natural or anthropogenic alterations in different ecosystems (soils and sediments) where structuring of microbial communities according to depth has been observed.  相似文献   

17.
The scope of this study included the biodegradation performance and the rate of oxygen transfer in a pilot-scale immobilized soil bioreactor system (ISBR) of 10-L working volume. The ISBR was inoculated with an acclimatized population of contaminant degrading microorganisms. Immobilization of microorganisms on a non-woven polyester textile developed the active biofilm, thereby obtaining biodegradation rates of 81 mg/L x h and 40 mg/L x h for p-xylene and naphthalene, respectively. Monod kinetic model was found to be suitable to correlate the experimental data obtained during the course of batch and continuous operations. Oxygen uptake and transfer rates were determined during the batch biodegradation process. The dynamic gassing-out method was used to determine the oxygen uptake rate (OUR) and volumetric oxygen mass transfer, K(L) a. The maximum volumetric OUR of 255 mg O(2)/L x h occurred approximately at 720-722 h after inoculation, when the dry weight of biomass concentration was 0.67 g/L.  相似文献   

18.
A styrene-utilizing mixed microbial culture was isolated and utilized in a biofilter for the biological treatment of a contaminated air stream. Biofilter media consisted of composted wood bark and yard waste. The biofilters were acclimated at 120 s residence time and further evaluated at 60 and 30 s gas residence times. The biofilters received organic loading rates of up to 350 g/m3 h. The styrene volumetric removal rate was a function of the organic loading rate and increased with increasing loading rates. Average volumetric removal rates of 69–118 g/m3 h observed in our studies were higher than reported values for styrene biofilters. Average styrene removal efficiencies ranged from 65% to 75% (maximum 100%). Axial analysis of styrene concentration along the column indicated that the bulk of the styrene removal occurred in the first section of the biofilter. Analyses of the media indicated that the moisture content of the first section (50–55% w/w) was significantly lower than in the second and third sections (65–70% w/w). The pressure drops across the biofilter were low due to the high concentration of large media particles. The total pressure drops were 1–3, 4–6, and 10–16 mm for the 120-, 60-, and 30-s residence time periods, respectively. Journal of Industrial Microbiology & Biotechnology (2001) 26, 196–202. Received 04 March 2000/ Accepted in revised form 25 January 2001  相似文献   

19.
A pilot-scale mobile biofilter was developed where two types of wood chips (western cedar and 2 in. hardwood) were examined to treat odor emissions from a deep-pit swine finishing facility in central Iowa. The biofilters were operated continuously for 13 weeks at different air flow rates resulting in a variable empty bed residence time (EBRT) from 1.6 to 7.3 s. During this test period, solid-phase microextraction (SPME) PDMS/DVB 65 microm fibers were used to extract volatile organic compounds (VOCs) from both the control plenum and biofilter treatments. Analyses of VOCs were carried out using a multidimentional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O) system. Results indicated that both types of chips achieved significant reductions in p-cresol, phenol, indole and skatole which represent some of the most odorous and odor-defining compounds known for swine facilities. The results also showed that maintaining proper moisture content is critical to the success of wood-chip based biofilters and that this factor is more important than media depth and residence time.  相似文献   

20.
An aerobic submerged filter (ASF) using volcanic scoria stones as packing media was evaluated. The wastewater used was a mixture of sewage with sugar to obtain organic matter concentrations between 28 and 3230 mg CODt/L, hydraulic rates up to 2.88 m3/m2 d and organic loading rates between 0.45 and 9.4 kg CODt/m3 d. The system removed 80% of CODt as average for organic loading rates between 0.45 and 3 kg CODt/m3 d and 54% at the higher rate (9.4 kg CODt/m3 d). It was not necessary to backwash the filters, a negligible pressure drop and a good biomass attachment in the volcanic scoria stones was observed. Nitrification and organic matter biodegradation were carried out simultaneously with a nitrate production of 90% up to 1.7kgCODt/m3 d. Tracer studies revealed a completed mixed hydraulic pattern which was not affected by the presence of biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号