首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
将编码番茄核酮糖-1,5-二磷酸羧化酶/加氧酶小亚基转运肽的一段DNA序列与菠菜Rubisco大亚基的编码区连接,构建了一个Rubisco融合基因。限制性内切酶图谱和DNA序列分析证明副合部位的核苷酸序列符合构建前的三联密码子框架。将Rubisco融合基因转入E.coli,用IPTG进行诱导表达。利用蛋白质印迹技术检测到诱导产物的存在。  相似文献   

2.
利用固定化Rubisco大小亚基解离重组技术,进行水稻和烟草Rubisco大小亚基之间的分子杂交,实验表明,无论同源或异源的小亚基重组到固定化的大亚基上去后,其羧化酶活性没有明显的变化,但对加氧酶活性却有明显的影响。当水稻Rubisco的大亚基同烟草小亚基杂交重组后,其加氧酶活性同固定化水稻Rubisco相比有明显的增高,因而其羧化/氧化比值下降,并且接近于对照的固定化烟草Rubisco。反之,当烟草Rubisco的大亚基与水稻小亚基杂交重组后,其加氧酶活性同固定化烟草Rubisco相比有明显降低,因而其羧化/氧化比值升高,并接近于对照的固定化水稻Rubisco。由此推测,高等植物Rubisco的小亚基对酶的羧化/氧化比值有一定的影响。  相似文献   

3.
小麦返白系返白期间Rubisco变化研究   总被引:1,自引:0,他引:1  
以小麦返白系和对照矮变1号为材料,选用返白系三个特殊的时期,返白初期、全白期、复绿初期,对其叶片可溶性蛋白进行了Native-PAGE和SDS-PAGE的研究。结果表明:随着叶片白化,核酮糖1.5-二磷酸羧化酶/加氧酶(Rubisco)全酶谱带逐渐变小,全白叶全酶谱带消失,随着复绿全酶谱带又出现,并逐渐恢复。而且Rubisco大、小亚基(LS、SS)谱带减少幅度差异很大,大亚基减少远远大于小亚基。  相似文献   

4.
低温锻炼对水稻幼苗叶片中Rubisco的影响   总被引:11,自引:0,他引:11  
低温锻炼能提高水稻幼苗的抗冷力,低温锻炼虽不能明显提高Rubisco活性,却提高了冷却条件下Rubisco的稳定性和增强了胁迫后正常生长条件下其活性的恢复能力。分别用火箭免疫电泳分析Rubisco蛋白和SD-SPAGE分析大,小亚基量表明:低温锻炼未提高Rubnisco蛋白的合成能力,但增加了大,小亚基的合成量。  相似文献   

5.
Rubisco活化酶的研究进展   总被引:5,自引:0,他引:5  
唐如航  李立人 《生命科学》1998,10(4):159-163,166
Rubisco活化酶是最近发现的一种该编码的叶绿体蛋白,它在叶绿体内具有激活光合碳同化限速酶Rubisco的功能,该酶能在生理水平RuBP,CO2浓度(10μmol/L)下使Rubisco达到最大的活化程度,Rubisco活化酶的研究揭示了长期以来未能解决的Rubisco在体内活化的机理,Rubisco活化酶能解除磷酸糖对Rubisco活性的抑制作用,它的活化活性需要有ATP的存在,同时它有ATP  相似文献   

6.
影响水稻光合日变化的酶和相关因素的分析   总被引:13,自引:0,他引:13  
水稻叶片的最大光合速率出现在上午10:00时,Rubisco初始活力也在此时达到最大,然后逐渐降低,下午14:00时略上升后又下降.Rubisco初始活力与光合速率之间极显著相关,相关系数为 0.9474.运用相关性分析、回归分析、通径分析,对晴(有时有云)天气水稻叶片的光合速度、光合关键酶及有关因素的日变化进行综合评估,结果发现中午光合下降主要来自气孔限制,同时Rubisco活性也下降;Rubisco活性是影响光合日变化的又一重要生化因子.体内Rubisco活性受Rubisco活化酶的调节.  相似文献   

7.
Rubisco的装配──一种研究监护分子(molecularchaperone)作用的模型系统李立人(中国科学院上海植物生理研究所,上海200032)关键词Rubisco,装配1.引言核酮糖1,5-二磷酸羧化酶/加氧酶(简称Rubisco,E.C.4...  相似文献   

8.
用RT-PCR方法克隆了完整的水稻Rubisco小亚基前体cDNA基因,经耦联的体外转录和翻译系统合成了带同位素标记的小亚基前体蛋白,然后与新制备的豌豆完整叶绿体共保温,进行蛋白质的跨膜运输研究显示:异源的水稻Rubisco小亚基前体能穿膜运输入豌豆叶绿体。  相似文献   

9.
1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)是光合碳同化的关键酶,研究其降解机理对合理调控水稻生长后期光合衰退具有重要意义。前人用人为诱导植物衰老的方法,研究了Rubisco的降解机理,认为该酶降解之前,必需发生亚基间的交联聚合和向类囊体膜转移,这样在结构和空间上有利于水解酶的作用。我们用自然衰老叶片进行研究的结果表明:Rubisco在降解过程中其比活基本保持恒定,意味着未发生酶的失活,  相似文献   

10.
利用固定化Rubisco大小亚基解离重组技术,进行水稻和烟草Rubisco大小亚基之间的分子杂交,实验表明,无论同源或异源的小亚基重组到固定化的大亚基上去后,其羧化酶活性没有明显的变化,但对加氧酶活性却有明显的影响。当水稻Rubisco的大亚基同烟草小亚基杂交重组后,其加氧酶活性同固定化水稻Rubisco相比有明显的增高,因而其羧化/氧化比值下降,并且接近于对照的固定化烟草Rubisco。反之,当  相似文献   

11.
About 1 kb fragment of rbcS (ribulose 1, 5-bisphosphate carboxylase small subunit) gene in wild soybean (Glycine soja, Ji 50017) was amplified from total DNA by PCR assay. Sequence analysis of the fragment indicated that 1089 bp sequenced included the whole coding region for Rubisco small snbunit. The rbcS gene in wild soybean encoded a precursor composed of a transit peptide of 55 amino acids and a mature protein of 123 amino acids. There were two introns found in the rbcS gene as other dicotyledonous species previously sequenced. Comparison of DNA sequences showed high degree homology of rbcS genes between wild soybean and cultivated soybean (Glycine max var. wayne). Some changes of amino acids emerged from the diverse nucleotides did not affect the function of the small subunit. These results may contribute some basic data in molecular biology to study the origin and evolution of soybean.  相似文献   

12.
The chloroplast genome of chromophytic and rhodophytic algae differs from the plastid genome of plants and green algae in that it encodes the gene for the small subunit (rbcS) of ribulose 1,5-bisphosphate carboxylase/oxygenase. Hybridization studies indicated that there was a second region of chloroplast DNA from the marine diatom Cylindrotheca sp. strain N1 that strongly hybridized to a previously isolated Cylindrotheca fragment that contained the rbcS gene and flanking sequences. Subsequent determination of the oligonucleotide sequence of this second chloroplast DNA fragment, however, indicated that hybridization was due to identical sequences 3' to the previously cloned Cylindrotheca chloroplast rbcL rbcS genes. Sequences derived from the 5' end of the second chloroplast DNA fragment contained a short open reading frame of 80 amino acids which was found to be highly homologous to bacterial acyl carrier protein and nuclear-encoded acyl carrier protein from plants. Amino acid residues in the environment of Ser-36 of the Escherichia coli protein, which is bound to a 4'-phosphopantetheine moiety, are virtually identical in the Cylindrotheca deduced sequence and all other sources of this protein. Unlike plant acyl carrier-deduced amino acid sequences, there was no leader peptide sequence found for the presumptive Cylindrotheca protein, consistent with the location of this DNA fragment on the chloroplast genome of this organism. DNA encoding the putative acyl carrier protein gene and rbcS thus represent two genes that are chloroplast-encoded in the chromophytic marine diatom Cylindrotheca, a significant departure from the organization of such genes in plants.  相似文献   

13.
14.
构建叶绿体超氧化物歧化酶基因(ChlSOD),采用RT-PCR方法分离豌豆RUBP羧化酶小亚基导肽基因(TP),定向克隆至pUC19测序,定向克隆烟草MnSOD成熟蛋白基因(SODm)至pUC19;采用平粘端连接法将二者在pUC19中构成嵌合基因ChlSOD,并对此基因进行序列分析,序列分析表明:TPcDNATP,12bp的Linker及615bp SODm。TP与ChlSOD基因的序列分析与国外报道序列完全吻合。  相似文献   

15.
Two sets of genes for the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) were detected in the photosynthetic purple sulfur bacterium Chromatium vinosum by hybridization analysis with RuBisCO gene probes, cloned by using the lambda Fix vector, and designated rbcL-rbcS and rbcA-rbcB. rbcL and rbcA encode the large subunits, and rbcS and rbcB encode the small subunits. rbcL-rbcS was the same as that reported previously (A. M. Viale, H. Kobayashi, T. Takabe, and T. Akazawa, FEBS Lett. 192:283-288, 1985). A DNA fragment bearing rbcA-rbcB was subcloned in plasmid vectors and sequenced. We found that rbcB was located 177 base pairs downstream of the rbcA coding region, and both genes were preceded by plausible procaryotic ribosome-binding sites. rbcA and rbcD encoded polypeptides of 472 and 118 amino acids, respectively. Edman degradation analysis of the subunits of RuBisCO isolated from C. vinosum showed that rbcA-rbcB encoded the enzyme present in this bacterium. The large- and small-subunit polypeptides were posttranslationally processed to remove 2 and 1 amino acid residues from their N-termini, respectively. Among hetero-oligomeric RuBisCOs, the C. vinosum large subunit exhibited higher homology to that from cyanobacteria, eucaryotic algae, and higher plants (71.6 to 74.2%) than to that from the chemolithotrophic bacterium Alcaligenes eutrophus (56.6%). A similar situation has been observed for the C. vinosum small subunit, although the homology among small subunits from different organisms was lower than that among the large subunits.  相似文献   

16.
Abstract The gene encoding an 18 kDa fimbrial subunit of Vibrio cholerae O1 was identified in a fimbriate strain Bgd17. Mixed oligoprimers were prepared based on the amino acid sequence of the N-terminus and that from a cyanogen bromide-cleaved fragment of the fimbrillin. A PCR-amplified 185 bp DNA fragment was sequenced. This 185 bp fragment was further extended to 540 bp to 3' and 5' termini by RNA-PCR using a primer containing a random hexamer at its 3' end. This fragment did not contain the stop codons. It was further extended by a gene walking method using Eco RI cassette and its primers. Finally a 660 bp fragment was obtained and sequenced. This fragment contained the complete open reading frame of the structural subunit of the fimbriae, composed of 169 amino acids with a molecular mass of 17435.65 and a leader sequence of 6 or 9 amino acids. The deduced amino acid sequence of the polypeptide encoded by the gene, designated fim A, displayed a highly conserved sequence of MKXXXGFTLI EL of type 4 fimbriae.  相似文献   

17.
18.
Genomic DNA containing the protein coding region for Drosophila cAMP-dependent protein kinase catalytic subunit has been cloned and sequenced. The probe used to detect and isolate the gene fragment was constructed from two partially complementary synthetic oligonucleotides and contains 60 base pairs that encode (using Drosophila codon preferences) amino acids 195-214 of the beef heart catalytic subunit. In reduced stringency hybridization conditions, the probe recognizes two target sites in fly genomic DNA with 85% homology. One of these sites is in the cAMP-dependent protein kinase catalytic subunit gene, which was isolated as a 3959-base pair HindIII fragment. This fragment contains all of the protein coding portion, 900 base pairs upstream of the initiator ATG, and 2000 base pairs downstream of the termination codon (TAG). The coding portion of the gene contains no introns and yields a protein of 352 amino acids. There is a 2-amino acid insertion near the N terminus of the fly protein relative to the beef and mouse enzymes. Of the remaining 350 amino acids, 273 are invariant in the three species. A probe derived from the coding sequence of the HindIII clone hybridizes strongly to a 5100-base poly(A)+ RNA and weakly to 4100- and 3400-base poly(A)+ RNAs expressed in adult flies. A 2100-base pair EcoRI genomic fragment containing the second site recognized by the 60-base pair probe has also been cloned. DNA sequence analysis demonstrates that this fragment is part of the cGMP-dependent protein kinase gene or a close homolog. The catalytic subunit gene and the cGMP-dependent protein kinase gene have been located in regions 30C and 21D, respectively, of chromosome 2.  相似文献   

19.
A DNA fragment containing the gene encoding subunit C of vaculor H(+)-ATPase (V-ATPase) was cloned from a yeast library. The predicted amino acid sequence indicated that the C subunit consists of 373 amino acids with a calculated molecular mass of 42,287 Da. The protein from yeast is 37% identical in its amino acid sequence to the C subunit of bovine V-ATPase. The DNA fragment that was cloned in this study contained two additional reading frames. At the 5' end an amino acid sequence that is homologous to Artemia elongation factor 1 was detected. At the 3' end the N-terminal part of a kinesin-like protein was observed. The gene encoding subunit C of the V-ATPase was interrupted, and the resulting mutant could not grow at high pH and was sensitive to low and high Ca2+ concentrations in the growth medium. Transformation of the mutant by a plasmid containing the gene encoding subunit C repaired the phenotype of the mutant. Substitution of more than half of the coding region by a corresponding DNA fragment encoding the bovine subunit C resulted in a phenotype indistinguishable from wild type. Immunological studies with the disruptant mutant revealed that subunit C is necessary for the assembly of the catalytic sector of the enzyme.  相似文献   

20.
The amino acid sequence of the A2B1a subunit of glycinin   总被引:3,自引:0,他引:3  
The amino acid sequences of the acidic and basic components of the A2B1a subunit of glycinin, the major seed reserve protein of the soybean (Glycine max L. Merr.), were determined. They contain 278 and 180 amino acids, respectively, and have molecular weights of 31,600 +/- 100 and 19,900 +/- 100. The molecular weight of the acidic component is considerably less than that estimated by sodium dodecyl sulfate-gel electrophoresis (37,000). Sequence heterogeneity was detected at several positions scattered throughout the primary structures of both components, indicating that the preparation sequenced was composed of several nearly identical polypeptides. These data, in conjunction with a recently determined nucleotide sequence of the 3'-terminal two-thirds of the analogous glycinin subunit gene, illustrate the complexity of the gene family responsible for synthesis of glycinin subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号