首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以转正义和反义abp基因[生长素结合蛋白(ABP)的基因]烟草及对照的叶外植体为材料,在附加2mg/L或1mg/L的6-BA和不同浓度的NAA的MS培养基上进行不定芽分化试验。在较低NAA浓度条件下,转正义abp基因烟草(SE2)的叶外植体分化的不定芽数高于对照(SR1)和转反abp基因烟草(AS3),说明SE2对生长素的敏感性比SR1和AS3高;而在较高NAA浓度条件下,AS3分化的不定芽数大于SE2和SR1,说明AS3对生长素的敏感性比SE2和SR1低。在培养基中加入生长素极性运输抑制剂HFCA后,不定芽分化受到抑制,分化不定芽中部分叶的形态由两侧对称性生长转变为形成不对称的喇叭状叶。在HFCA浓度为0-7.5mg/L条件下,SE2的喇叭叶发生频率明显高于SR1和AS3,其中SE2和SR1的喇叭叶发生频率分别在HFCA浓度为6.5和7.5mg/L时达到最高以后保持平稳,而AS3的喇叭叶发生频率在HFCA处理浓度直到15mg/L时仍保持上升趋势。这些结果说明ABP具有结合外源生长素,从而促进芽器官分化的功能,同时可能作为生长素受体参与了生长素的极性运输。  相似文献   

2.
在只含6-BA(2mg/L)的MS培养基上,烟草花柄外植体形态学基端膨大,上着生再生花芽,而花柄中部大多都形成愈伤组织。添加IAA(2,10,20 mg/L)后,花柄基端膨大的现象依然存在,但再生花芽的分布并不限于基端,在花柄中部、顶端都可见再生花芽。花柄外植体中部愈伤组织的形成也随添加的IAA和IAA浓度升高而受到抑制。在上述培养基中添加生长素极性运输抑制剂TIBA后,无一花柄中部能形成愈伤组织,再生花芽的形态变化也很大,有具锥形花柄的花芽、喇叭叶和一些难于确定由何种器官衍生而来的喇叭状器官。这些异于正常形态的器官发生,显然与花柄外植体中生长素极性运输受抑制有关,本文对它们的形成机理作了一些推测。  相似文献   

3.
生长素与乙烯在沙田柚上胚轴不定芽再生中的作用   总被引:3,自引:0,他引:3  
结果表明,6 BA只能诱导较低频率的不定芽再生,IBA的加入可以促进不定芽的再生。从再生率与单位外植体再生芽数综合考虑,以高浓度IBA(1.5mg·L 1)与低浓度6 BA(0.5mg·L 1)配合的效果最佳,加入生长素极性运输的调节剂TIBA与Flavone可进一步提高不定芽的再生频率。乙烯抑制上胚轴不定芽的再生,而乙烯生理作用的拮抗剂Ag+与生物合成抑制剂AOA、Co+可以显著提高不定芽再生频率。水杨酸(SA)也抑制不定芽的再生。  相似文献   

4.
以彩色大白菜子叶为外植体,研究不同激素配比和AgNO3对不定芽再生的影响。结果表明:单独附加细胞分裂素(6-BA或TDZ)的MS培养基,不能诱导子叶不定芽分化;而同时附加生长素(NAA)和细胞分裂素(6-BA或TDZ),不定芽的再生频率提高,最高为15%;AgNO3与细胞分裂素及生长素配合使用,能大幅度提高子叶不定芽的再生频率,提高率最高达42.5%。与6-BA相比,TDZ对不定芽再生的效果更好。当TDZ浓度为0.05mg/L、NAA为0.3mg/L、AgNO3为8mg/L时,产生丛状芽数目最多,再生率最高,达50%。  相似文献   

5.
利用丰香草莓叶片作外植体,通过体外实验培养的方法,进行组织培养与再生,研究不同培养基配比对草莓叶片不定芽诱导的影响。结果表明,诱导叶盘再生不定芽的最佳外植体培养基为MS 6-BA(1.5mg/l) IAA(1.5mg/l)。表明只有细胞分裂素和生长素的浓度相当时,才能有效的诱导不定芽再生。  相似文献   

6.
枣树离体叶片不定芽再生体系建立的研究   总被引:10,自引:0,他引:10  
建立了木枣无菌试管苗快繁体系,以无菌苗叶片为外植体,对影响离体叶片不定芽直接再生的因素进行了研究.试验结果表明,TDZ比BA能更有效地诱导叶片不定芽的再生;褐化是抑制不定芽再生频率提高的关键因子,培养基中添加PVP、V c及改变生长素的种类和浓度均不能促进不定芽再生;添加A gNO3能够减轻褐化并可以大幅度提高再生频率,同时培养初期经过3周避光培养更有利于提高再生效率.因此,以附加2.0 m g/L TDZ和0.2 m g/L IBA的M S培养基,并添加5.0 m g/L A gNO3,可以高效诱导木枣离体叶片不定芽再生,再生频率最高达98.3%.不定芽在附加0.2 m g/L IBA和0.5 m g/L GA3的M S培养基上进行继代伸长培养,当不定芽长至3 cm时,转接至附加0.4 m g/L IBA的1/2 M S培养基上可以良好地诱导生根.  相似文献   

7.
'早红'草莓高效遗传转化受体系统的建立   总被引:2,自引:0,他引:2  
本文以草莓主栽品种'早红'组培苗离体叶片和叶柄为外植体,进行叶龄、暗培养、植物生长调节剂配比及抗生素敏感性研究,建立草莓高效遗传转化的受体系统.在含3.0 mg/L 6-BA与0.1 mg/L 2,4-D的MS培养基上,30 d叶龄的叶片再生频率高达98.31%,平均每叶片再生芽数5.09个,叶柄切段的再生频率为89.25%,平均每叶柄切段再生芽数4.92个,叶片的再生频率略高于叶柄;不定芽在含0.2 mg/L 6-BA与0.2 mg/L GA_3的MS继代培养基上培养成苗.将生长状态良好的不定芽转至含0.2 mg/L IBA的1/2 MS培养基上生根,生根率达100%,平均生根数量16.27条,平均根长1.85 cm.抗生素敏感性试验表明,草莓外植体适宜的卡那霉素选择压力为25 mg/L,头孢霉素的筛选浓度为300mg/L.本研究建立的再生体系可作为草莓遗传转化的受体系统.  相似文献   

8.
草莓高效离体叶片再生体系的建立   总被引:2,自引:1,他引:1  
以草莓'明宝(Meiho)'和'红颊(Benihope)'的叶片为外植体,研究了不同基本培养基、暗培养时间、植物生长调节剂、叶龄、不同放置方式对其不定芽再生的影响.结果表明:各品种叶片不定芽离体再生的最佳条件不同.'明宝'叶片的最佳不定芽再生培养基为MS+2.5 mg/L TDZ+0.1 mg/L IBA+0.1 mg/L 2,4-D,叶片再生的最佳叶龄为30~40 d,再生率可达82.8%;'红颊'叶片的最佳不定芽再生培养基为MS+2.0 mg/L TDZ+0.1 mg/L IBA+0.1 mg/L 2,4-D,叶片再生的最佳叶龄在10~20 d,再生率可达79.8%.2个品种叶片暗培养14 d可以提高不定芽再生率;叶片正放比反放再生效果好;添加8 mg/L AgNO3和1 000 mg/L活性炭可有效提高再生率.  相似文献   

9.
不结球白菜离体培养与植株再生体系研究   总被引:8,自引:2,他引:6  
以4个不结球白菜品种为试材,对外植体、苗龄、激素的组配、培养基中琼脂和AgNO3浓度等再生因素进行了筛选优化,并探讨了抗坏血酸(AsA)对不结球白菜不定芽分化的影响。结果显示:以4~7d苗龄的带柄子叶为外植体诱导不定芽效果较好;MN培养基中4mg/L6-BA与0.5mg/LNAA的搭配有利于不定芽形成;琼脂的浓度变化对不定芽分化影响较大,以9g/L琼脂为宜;培养基中添加5~7.5mg/L的AgNO3、0.1~0.5mmol/L的AsA可显著提高不定芽的发生频率和质量。通过不定芽继代培养、生根培养和驯化移栽建立了能够获得较高再生频率的不结球白菜离体再生体系。  相似文献   

10.
香石竹叶片离体再生体系的建立   总被引:2,自引:1,他引:1  
以香石竹(Dianthus caryophyllus Linn.)无菌苗叶片为外植体,从不同细胞分裂素及其他激素配合使用等方面进行筛选,建立香石竹叶片离体再生体系.结果表明,不同的细胞分裂素影响叶片不定芽分化频率,其中较低浓度的6-BA(0.5 mg·L-1)和TDZ(0.001 mg·L-1)配合使用能有效诱导香石竹叶片不定芽分化;添加一定浓度的PP333(4 mg·L-1)可提高叶片不定芽分化频率和平均芽数.香石竹叶片不定芽分化的适宜培养基为:MS 0.002mg·L-1TDZ 0.5 mg·L-16-BA 0.2 mg·L-1IAA 4 mg·L-1PP333;壮苗培养基为:MS 0.2 mg·L-1 6-BA 0.2 mg·L-1IAA;生根培养基为:1/2 MS.不定芽诱导频率达到42.61%,平均芽数为4.53个.  相似文献   

11.
Tobacco (Nicotiana tabacum L. cv. Gexin No. 1) leaf slices were cultured in MS medium with different concentrations of auxin polar transport inhibitors (2, 3, 5-triiodobenzoic acid (TIBA), trans-cinnamic acid (CA), and 9-hydooxyflurence-9-carboxylic acid (HFCA)) and their effects on bud formation were observed. Although the effective concentrations vary with different inhibitors, all of them induced the formation of trumpet-shaped leaves. The frequencies of trumpet-shaped leaves were increased with the concentrations of inhibitors in media, and it was up to 82.1% when cultured in the medium containing 7.5 mg/L TIBA. The trumpet-shaped leaves were formed in different sites of the adventitious buds. These results indicated that inhibition of auxin polar transport could affect the morphogenesis of leaves, so the polar transport of auxin is essential for the bilateral symmetry of leaf growth.  相似文献   

12.
Foliar modifications induced by inhibition of polar transport of auxin   总被引:3,自引:0,他引:3  
The effects of auxin polar transport inhibitors,9-hydroxy-fluorene-9-carboxylic acid (HFCA);2,3,5-triiodobenzoic acid(TIBA) and trans-cinnamic acid (CA) on leaf pattern formation were investigated with shoots formed from cultured leaf explants of tobacco and cultured pedicel explants of Orychophragmus violaceus,and the seedlings of tobacco and Brassica chinensis,Although the effective concentration varies with the inhibitors used,all of the inhibitors induced the formation of trumpet-shaped and/or fused leaves.The frequency of trumpet-shaped leaf formation was related to the concentration of inhibitors in the medium.Histological observation of tobacco seedlings showed that there was only one main vascular bundle and several minor vascular bundles in normal leaves of the control,but there were several vascular bundles of more or less the same size in the trumpet-shaped leaves of treated ones.These results indicated that auxin polar transport played an important role on bilateral symmetry of leaf growth.  相似文献   

13.
Y. E. Choi  M. Katsumi  H. Sano   《Plant science》2001,160(6):1183-1190
The effect of auxin polar transport inhibitor on somatic embryo development and postembryonic growth in Siberian ginseng (Eleutherococcus senticosus) was examined. In the presence of 2,3,5-triiodobenzoic acid (TIBA), an auxin polar transport inhibitor, embryo formation from embryogenic cells was suppressed, while cell division was not affected. When globular embryos at different stages were transferred onto medium containing TIBA, development of axial and bilateral polarity was suppressed in a stagespecific manner. In abnormal embryos induced by TIBA, further development of shoot and root apical meristems and vascular differentiation was also suppressed. Thus, abnormal development of embryos induced by inhibition of auxin polar transport resulted in plantlets without shoots and roots.  相似文献   

14.
Auxin is required for leaf vein pattern in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Sieburth LE 《Plant physiology》1999,121(4):1179-1190
To investigate possible roles of polar auxin transport in vein patterning, cotyledon and leaf vein patterns were compared for plants grown in medium containing polar auxin transport inhibitors (N-1-naphthylphthalamic acid, 9-hydroxyfluorene-9-carboxylic acid, and 2,3,5-triiodobenzoic acid) and in medium containing a less well-characterized inhibitor of auxin-mediated processes, 2-(p-chlorophynoxy)-2-methylpropionic acid. Cotyledon vein pattern was not affected by any inhibitor treatments, although vein morphology was altered. In contrast, leaf vein pattern was affected by inhibitor treatments. Growth in polar auxin transport inhibitors resulted in leaves that lacked vascular continuity through the petiole and had broad, loosely organized midveins, an increased number of secondary veins, and a dense band of misshapen tracheary elements adjacent to the leaf margin. Analysis of leaf vein pattern developmental time courses suggested that the primary vein did not develop in polar auxin transport inhibitor-grown plants, and that the broad midvein observed in these seedlings resulted from the coalescence of proximal regions of secondary veins. Possible models for leaf vein patterning that could account for these observations are discussed.  相似文献   

15.
In order to clarify the mechanism underlying the polar auxin transport system, the pis1 mutant in Arabidopsis thaliana that is hypersensitive to N -1-naphthylphthalamic acid (NPA), an auxin transport inhibitor was isolated and characterized. Whereas the pis1 mutant is normally sensitive to phytohormones, auxins, cytokinin and ethylene precursor, this mutant is hypersensitive to NPA over the broad spectrum of its effects such as growth of seedlings, root elongation, root gravitropism, root phototropism and root curling. This result indicates that the pis1 mutant is specifically affected in the polar auxin transport system. This result also defines a genetic factor controlling both gravitropism and phototropism, and strongly indicates the involvement of auxin transport during both tropic responses. NPA, 2,3,5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) represent different classes of auxin transport inhibitors. The pis1 mutation conferred hypersensitivity to both NPA and TIBA but not to HFCA. These results show the genetic separation of the actions of NPA/TIBA and of HFCA. The PIS1 gene product might be specifically involved in the response pathway of NPA/TIBA, leading to interference with auxin-efflux carriers, and might act as a negative regulator of the action of NPA/TIBA.  相似文献   

16.
Summary Triiodobenzoic acid (TIBA), an anti-auxin, was found to inhibit both shoot and root formation in cultured excised leaf explants of tobacco (Nicotiana tabacum L.). The shoot formation (SF) medium used required only exogenous cytokinin (N6-benzyladenine) and the root formation (RF) medium required both auxin (indole-3-butyric acid) and cytokinin (kinetin). By transferring the explants from SF or RF media to SF or RF media with TIBA (4.0×10−5 M), respectively or vice versa, at different times in culture, it was found that TIBA inhibition was at the time of meristemoid formation and after determination of organogenesis. This indicates that TIBA interfered with endogenous auxin involvement in organized cell division.  相似文献   

17.
生长素极性运输(PAT)在植物生长发育尤其是极性发育和模式建成中起重要作用.采用2种PAT抑制剂TIBA(2,3,5-triiodobenzoic acid)和HFCA(9-hydroxyfluorene-9-carboxylic acid)处理水稻(Oryza sativa L. cv.Zhonghua)幼苗,结果表明:PAT影响水稻根发育包括主根的伸长、侧根的起始和伸长以及不定根的发育.PAT的抑制导致主根变短、侧根和不定根数目减少.外源附加生长素(NAA)可以部分恢复不定根的形成但不能恢复侧根的形成,表明在侧根和不定根的形成上可能具有不同的机制.切片结果表明,30μmol/TIBA处理后并不完全抑制侧根原基的形成,进一步研究表明生长素由胚芽鞘向基部的运输在水稻不定根的起始和伸长中起关键作用.  相似文献   

18.
The development of somatic embryos is, in many plants, inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxins. The finding that difluoromethylornithine (DFMO) can counteract this inhibition has been used to test some of the hypotheses for the mechanism of inhibition.
Inhibition of somatic embryogenesis in carrot ( Daucus carota L.) by exogenous ethylene (from ethephon), antioxidants (ascorbic acid and glutathione), ethanol/acetaldehyde and abscisic acid was not counteracted by DFMO, indicating that the inhibitory effect of 2,4-D is not manifest through the formation of these compounds. Embryogenesis was abolished by micromolar concentrations of the polar auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA). This inhibition was counteracted to a considerable extent by DFMO. Inhibition by relatively high concentrations of the antiauxin 2-( p -chlorophenoxy)-isobutyric acid (CPIB), which does not affect polar auxin transport, was in contrast not counteracted by DFMO. These findings indicate that exogenous auxins may inhibit embryogenesis by interfering with the ability of postglobular embryos to set up internal auxin gradients necessary for polarized growth.  相似文献   

19.
Detailed examination of the hyponastic curvature of the primary bean leaf blade in response to indoleacetic acid (IAA) shows that curvature begins within 15 min after application and increases to a maximal rate at 20 to 30 min. A second application of IAA results in a second curvature maximum when applied 1.5 hr or more after the first. Washing experiments indicate IAA uptake is largely complete by about 20 min after application, suggesting the return to planar form is accompanied by the uptake and passage of a wave of IAA through the responding cells. The rate of curvature decreases as the temperature is lowered, particularly below 14 C; at low concentrations (10–4 m) the rate of response to 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxypropionic acid is slower than that for IAA and naphthaleneacetic acid. These differences are proposed to reflect the involvement of the polar auxin transport system in the response. The leaves of bean seedlings exposed to 4 C develop hyponastic curvatures when returned to normal growth temperature; 5 min treatment is sufficient to induce this response, and with longer treatments, greater curvatures are obtained. This curvature is inhibited by application of 2,3,5-triiodobenzoic acid (TIBA) to the undersurface of the leaf at the beginning of the cold treatment. The results are consistent with a model of planar plageotropic growth regulation in the leaf blade in which auxin produced by cells in the upper portion of the blade is transported by the polar transport system through cells in the lower portion that are growth limited by auxin supply. The hyponastic and epinastic effects caused by exogenous application of auxin or TIBA and of cold treatments are considered to result from changes in this auxin supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号