首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2Wt and DDB2PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity.  相似文献   

2.
Damaged DNA Binding protein 1 (DDB1) is a conserved protein and a component of multiple cellular complexes. Arabidopsis has two homologues of DDB1: DDB1A and DDB1B. In this study we examine the role of DDB1A in Arabidopsis UV tolerance and DNA repair using a DDB1A null mutant (ddb1a) and overexpression lines. DDB1A overexpression lines showed higher levels of UV-resistance than wild-type in a range of assays as well as faster DNA repair. However a significant difference between wild-type plants and ddb1a mutants was only observed immediately following UV treatment in root length and photoproduct repair assays. DDB1A and DDB1B mRNA levels increased 3 h after UV exposure and DDB1A is required for UV regulation of DDB1B and DDB2 mRNA levels. In conclusion, while DDB1A is sufficient to increase Arabidopsis UV tolerance, it is only necessary for immediate response to UV damage.  相似文献   

3.
Tang J  Chu G 《DNA Repair》2002,1(8):601-616
  相似文献   

4.
UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.  相似文献   

5.
How the nucleotide excision repair (NER) machinery gains access to damaged chromatinized DNA templates and how the chromatin structure is modified to promote efficient repair of the non-transcribed genome remain poorly understood. The UV-damaged DNA-binding protein complex (UV-DDB, consisting of DDB1 and DDB2, the latter of which is mutated in xeroderma pigmentosum group E patients, is a substrate-recruiting module of the cullin 4B-based E3 ligase complex, DDB1-CUL4B(DDB2). We previously reported that the deficiency of UV-DDB E3 ligases in ubiquitinating histone H2A at UV-damaged DNA sites in the xeroderma pigmentosum group E cells contributes to the faulty NER in these skin cancer-prone patients. Here, we reveal the mechanism by which monoubiquitination of specific H2A lysine residues alters nucleosomal dynamics and subsequently initiates NER. We show that DDB1-CUL4B(DDB2) E3 ligase specifically binds to mononucleosomes assembled with human recombinant histone octamers and nucleosome-positioning DNA containing cyclobutane pyrimidine dimers or 6-4 photoproducts photolesions. We demonstrate functionally that ubiquitination of H2A Lys-119/Lys-120 is necessary for destabilization of nucleosomes and concomitant release of DDB1-CUL4B(DDB2) from photolesion-containing DNA. Nucleosomes in which these lysines are replaced with arginines are resistant to such structural changes, and arginine mutants prevent the eviction of H2A and dissociation of polyubiquitinated DDB2 from UV-damaged nucleosomes. The partial eviction of H3 from the nucleosomes is dependent on ubiquitinated H2A Lys-119/Lys-120. Our results provide mechanistic insight into how post-translational modification of H2A at the site of a photolesion initiates the repair process and directly affects the stability of the human genome.  相似文献   

6.
The c-Abl tyrosine kinase is activated by some forms of DNA damage, including ionizing radiation, but not UV radiation. The functions of this activation in the damage response pathways remain obscure. To identify potential targets of c-Abl kinase, we utilized the yeast two-hybrid system to screen a murine cDNA library. One c-Abl binding protein of particular interest was the large subunit (DDB1) of the heterodimeric complex with UV-damaged DNA binding activity (UV-DDB). This complex binds with high specificity to DNA damaged by UV, is absent in a subset of xeroderma pigmentosum group E cells, and is required for global genomic repair of UV-induced damage. The association of c-Abl with DDB1 required the kinase domain of c-Abl and preserved the interaction between DDB1 and the small subunit (DDB2) of the UV-DDB complex. Significantly, overexpression of c-Abl increased tyrosine phosphorylation of DDB2 and suppressed UV-DDB activity. Conversely, a dominant negative, kinase-deficient allele of c-Abl decreased tyrosine phosphorylation of DDB2 and dramatically stimulated UV-DDB activity. These results suggest that one role of c-Abl may be to negatively regulate UV-DDB activity by phosphorylation of DDB2.  相似文献   

7.
Xeroderma pigmentosum is characterized by increased sensitivity of the affected individuals to sunlight and light-induced skin cancers and, in some cases, to neurological abnormalities. The disease is caused by a mutation in genes XPA through XPG and the XP variant (XPV) gene. The proteins encoded by the XPA, -B, -C, -D, -F, and -G genes are required for nucleotide excision repair, and the XPV gene encodes DNA polymerase eta, which carries out translesion DNA synthesis. In contrast, the mechanism by which the XPE gene product prevents sunlight-induced cancers is not known. The gene (XPE/DDB2) encodes the small subunit of a heterodimeric DNA binding protein with high affinity to UV-damaged DNA (UV-damaged DNA binding protein [UV-DDB]). The DDB2 protein exists in at least four forms in the cell: monomeric DDB2, DDB1-DDB2 heterodimer (UV-DDB), and as a protein associated with both the Cullin 4A (CUL4A) complex and the COP9 signalosome. To better define the role of DDB2 in the cellular response to DNA damage, we purified all four forms of DDB2 and analyzed their DNA binding properties and their effects on mammalian nucleotide excision repair. We find that DDB2 has an intrinsic damaged DNA binding activity and that under our assay conditions neither DDB2 nor complexes that contain DDB2 (UV-DDB, CUL4A, and COP9) participate in nucleotide excision repair carried out by the six-factor human excision nuclease.  相似文献   

8.
DDB2 was identified as a protein involved in the Nucleotide Excision Repair (NER), a major DNA repair mechanism that repairs UV damage to prevent accumulation of mutations and tumorigenesis. However, recent studies indicated additional functions of DDB2 in the DNA damage response pathway. Herein, we discuss the proposed mechanisms by which DDB2 activates NER and programmed cell death upon DNA damage through its E3 ligase activity.  相似文献   

9.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

10.
Nucleotide excision repair (NER) is a major cellular defense against the carcinogenic effects of ultraviolet light from the sun. Mutational inactivation of NER proteins, like DDB and CSA, leads to hereditary diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). Here, we show that DDB2 and CSA are each integrated into nearly identical complexes via interaction with DDB1. Both complexes contain cullin 4A and Roc1 and display ubiquitin ligase activity. They also contain the COP9 signalosome (CSN), a known regulator of cullin-based ubiquitin ligases. Strikingly, CSN differentially regulates ubiquitin ligase activity of the DDB2 and CSA complexes in response to UV irradiation. Knockdown of CSN with RNA interference leads to defects in NER. These results suggest that the distinct UV response of the DDB2 and CSA complexes is involved in diverse mechanisms of NER.  相似文献   

11.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   

12.
Xeroderma pigmentosum (XP) complementation group E gene product, damaged DNA-binding protein 2 (DDB2), is a subunit of the DDB heterodimeric protein complex with high specificity for binding to a variety of DNA helix-distorting lesions. DDB is believed to play a role in the initial step of damage recognition in mammalian nucleotide excision repair (NER) of ultraviolet light (UV)-induced photolesions. It has been shown that DDB2 is rapidly degraded after cellular UV irradiation. However, the relevance of DDB2 degradation to its functionality in NER is still unknown. Here, we have provided evidence that Cullin 4A (CUL-4A), a key component of CUL-4A-based ubiquitin ligase, mediates DDB2 degradation at the damage sites and regulates the recruitment of XPC and the repair of cyclobutane pyrimidine dimers. We have shown that CUL-4A can be identified in a UV-responsive protein complex containing both DDB subunits. CUL-4A was visualized in localized UV-irradiated sites together with DDB2 and XPC. Degradation of DDB2 could be blocked by silencing CUL-4A using small interference RNA or by treating cells with proteasome inhibitor MG132. This blockage resulted in prolonged retention of DDB2 at the subnuclear DNA damage foci within micropore irradiated cells. Knock down of CUL-4A also decreased recruitment of the damage recognition factor, XPC, to the damaged foci and concomitantly reduced the removal of cyclobutane pyrimidine dimers from the entire genome. These results suggest that CUL-4A mediates the proteolytic degradation of DDB2 and that this degradation event, initiated at the lesion sites, regulates damage recognition by XPC during the early steps of NER.  相似文献   

13.
14.
Sugasawa K  Okuda Y  Saijo M  Nishi R  Matsuda N  Chu G  Mori T  Iwai S  Tanaka K  Tanaka K  Hanaoka F 《Cell》2005,121(3):387-400
The xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER). Ultraviolet light (UV)-damaged DNA binding protein (UV-DDB) is another complex that appears to be involved in the recognition of NER-inducing damage, although the precise role it plays and its relationship to XPC remain to be elucidated. Here we show that XPC undergoes reversible ubiquitylation upon UV irradiation of cells and that this depends on the presence of functional UV-DDB activity. XPC and UV-DDB were demonstrated to interact physically, and both are polyubiquitylated by the recombinant UV-DDB-ubiquitin ligase complex. The polyubiquitylation altered the DNA binding properties of XPC and UV-DDB and appeared to be required for cell-free NER of UV-induced (6-4) photoproducts specifically when UV-DDB was bound to the lesion. Our results strongly suggest that ubiquitylation plays a critical role in the transfer of the UV-induced lesion from UV-DDB to XPC.  相似文献   

15.
Because cells are constantly subjected to DNA damaging insults, DNA repair pathways are critical for genome integrity [1]. DNA damage recognition protein complexes (DRCs) recognize DNA damage and initiate DNA repair. The DNA-Damage Binding protein 2 (DDB2) complex is a DRC that initiates nucleotide excision repair (NER) of DNA damage caused by ultraviolet light (UV) [2][4]. Using a purified DDB2 DRC, we created a probe (“DDB2 proteo-probe”) that hybridizes to nuclei of cells irradiated with UV and not to cells exposed to other genotoxins. The DDB2 proteo-probe recognized UV-irradiated DNA in classical laboratory assays, including cyto- and histo-chemistry, flow cytometry, and slot-blotting. When immobilized, the proteo-probe also bound soluble UV-irradiated DNA in ELISA-like and DNA pull-down assays. In vitro, the DDB2 proteo-probe preferentially bound 6-4-photoproducts [(6-4)PPs] rather than cyclobutane pyrimidine dimers (CPDs). We followed UV-damage repair by cyto-chemistry in cells fixed at different time after UV irradiation, using either the DDB2 proteo-probe or antibodies against CPDs, or (6-4)PPs. The signals obtained with the DDB2 proteo-probe and with the antibody against (6-4)PPs decreased in a nearly identical manner. Since (6-4)PPs are repaired only by nucleotide excision repair (NER), our results strongly suggest the DDB2 proteo-probe hybridizes to DNA containing (6-4)PPs and allows monitoring of their removal during NER. We discuss the general use of purified DRCs as probes, in lieu of antibodies, to recognize and monitor DNA damage and repair.  相似文献   

16.
Kaoru Sugasawa 《DNA Repair》2009,8(8):969-972
UV-damaged DNA-binding protein (UV-DDB) is characterized by its very high affinity and specificity for UV-damaged DNA. Although precise roles for UV-DDB have been quite enigmatic since its discovery, accumulating evidence indicates that it promotes recognition of and protein assembly on UV photolesions in the global genome nucleotide excision repair pathway. The recently solved crystal structure of UV-DDB bound to DNA containing a (6-4) photoproduct has revealed that the DDB2/XPE subunit is responsible for the interaction, which induces flipping out of the two affected bases into a binding pocket, indicating that UV-DDB has evolved especially to recognize dinucleotide lesions, like UV photolesions. Taken together with the previously solved structure of the DDB1-CUL4A E3 ligase, this study has also novel insights into how this factor coordinates ubiquitination of various protein substrates around the site of DNA damage.  相似文献   

17.
Previous studies point to the XPC-hHR23B complex as the principal initiator of global genome nucleotide excision repair (NER) pathway, responsible for the repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) in human cells. However, the UV-damaged DNA binding protein (UV-DDB) has also been proposed as a damage recognition factor involved in repair of UV-photoproducts, especially CPD. Here, we show in human XP-E cells (UV-DDB deficient) that the incision complex formation at UV-induced lesions was severely diminished in locally damaged nuclear spots. Repair kinetics of CPD and 6-4PP in locally and globally UV-irradiated normal human and XP-E cells demonstrate that UV-DDB can mediate efficient targeting of XPC-hHR23B and other NER factors to 6-4PP. The data is consistent with a mechanism in which UV-DDB forms a stable complex when bound to a 6-4PP, allowing subsequent repair proteins--starting with XPC-hHR23B--to accumulate, and verify the lesion, resulting in efficient 6-4PP repair. These findings suggest that (i) UV-DDB accelerates repair of 6-4PP, and at later time points also CPD, (ii) the fraction of 6-4PP that can be bound by UV-DDB is limited due to its low cellular quantity and fast UV dependent degradation, and (iii) in the absence of UV-DDB a slow XPC-hHR23B dependent pathway is capable to repair 6-4PP, and to some extent also CPD.  相似文献   

18.
19.
Damaged DNA-binding protein (DDB), consisting of DDB1 and DDB2 subunits recognizes a wide spectrum of DNA lesions. DDB is dispensable for in vitro nucleotide excision repair (NER) reaction, but stimulates this reaction especially for cyclobutane pyrimidine dimer (CPD). Here we show that DDB directly interacts with XPA, one of core NER factors, mainly through DDB2 subunit and the amino-acid residues between 185 and 226 in XPA are important for the interaction. Interestingly, the point mutation causing the substitution from Arg-207 to Gly, which was previously identified in a XP-A revertant cell-line XP129, diminished the interaction with DDB in vitro and in vivo. In a defined system containing R207G mutant XPA and other core NER factors, DDB failed to stimulate the excision of CPD, although the mutant XPA was competent for the basal NER reaction. Moreover, in vivo experiments revealed that the mutant XPA is recruited to damaged DNA sites with much less efficiency compared with wild-type XPA and fails to support the enhancement of CPD repair by ectopic expression of DDB2 in SV40-transformed human cells. These results suggest that the physical interaction between DDB and XPA plays an important role in the DDB-mediated NER reaction.  相似文献   

20.
BRG1 is a catalytic subunit of the human SWI/SNF-like BAF chromatin remodeling complexes. Recent findings have shown that inactivation of BRG1 sensitizes mammalian cells to various DNA damaging agents, including ultraviolet (UV) and ionizing radiation. However, it is unclear whether BRG1 facilitates nucleotide excision repair (NER). Here we show that re-expression of BRG1 in cells lacking endogenous BRG1 expression stimulates nucleotide excision repair of UV induced DNA damage. Using a micropore UV radiation technique, we demonstrate that recruitment of the DNA damage recognition protein XPC to sites of UV lesions is significantly disrupted when BRG1 is depleted. Chromatin immunoprecipitation of the endogenous DDB2 protein, which is involved in recruiting XPC to UV-induced CPDs (cyclobutane pyrimidine dimers), shows that elevated levels of BRG1 are associated with DDB2 in chromatin in response to UV radiation. Additionally, we detected slow BRG1 accumulation at sites of UV lesions. Our findings suggest that the chromatin remodeling factor BRG1 is recruited to sites of UV lesions to facilitate NER in human chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号