首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus anthracis makes highly stable, heat-resistant spores which remain viable for decades. Effect of various stress conditions on sporulation in B. anthracis was studied in nutrient-deprived and sporulation medium adjusted to various pH and temperatures. The results revealed that sporulation efficiency was dependent on conditions prevailing during sporulation. Sporulation occurred earlier in culture sporulating at alkaline pH or in PBS than control. Spores formed in PBS were highly sensitive towards spore denaturants whereas, those formed at 45°C were highly resistant. The decimal reduction time (D-10 time) of the spores formed at 45°C by wet heat, 2 M HCl, 2 M NaOH and 2 M H2O2 was higher than the respective D-10 time for the spores formed in PBS. The dipicolinic acid (DPA) content and germination efficiency was highest in spores formed at 45°C. Since DPA is related to spore sensitivity towards heat and chemicals, the increased DPA content of spores prepared at 45°C may be responsible for increased resistance to wet heat and other denaturants. The size of spores formed at 45°C was smallest amongst all. The study reveals that temperature, pH and nutrient availability during sporulation affect properties of B. anthracis spores.  相似文献   

2.
Cold shock and ethanol and puromycin stress responses in sporulating Bacillus subtilis cells have been investigated. We show that a total of 13 proteins are strongly induced after a short cold shock treatment of sporulating cells. The cold shock pretreatment affected the heat resistance of the spores formed subsequently, with spores heat killed at 85 or 90 degrees C being more heat resistant than the control spores while they were more heat sensitive than controls that were heat treated at 95 or 100 degrees C. However, B. subtilis spores with mutations in the main cold shock proteins, CspB, -C, and -D, did not display decreased heat resistance compared to controls, indicating that these proteins are not directly responsible for the increased heat resistance of the spores. The disappearance of the stress proteins later in sporulation suggests that they cannot be involved in repairing heat damage during spore germination and outgrowth but must alter spore structure in a way which increases or decreases heat resistance. Since heat, ethanol, and puromycin stress produce similar proteins and similar changes in spore heat resistance while cold shock is different in both respects, these alterations appear to be very specific.  相似文献   

3.
AIMS: To study the effect of acid shock in sporulation on the production of acid-shock proteins, and on the heat resistance and germination characteristics of the spores formed subsequently. METHODS AND RESULTS: Bacillus subtilis wild-type (SASP-alpha+beta+) and mutant (SASP-alpha-beta-) cells in 2 x SG medium at 30 degrees C were acid-shocked with HCl (pH 4, 4.3, 5 and 6 against a control pH of 6.2) for 30 min, 1 h into sporulation. The D85-value of B. subtilis wild-type (but not mutant) spores formed from sporulating cells acid-shocked at pH 5 increased from 46.5 min to 78.8 min, and there was also an increase in the resistance of wild-type acid-shocked spores at both 90 degrees C and 95 degrees C. ALA- or AGFK-initiated germination of pH 5-shocked spores was the same as that of non-acid-shocked spores. Two-dimensional gel electrophoresis showed only one novel acid-shock protein, identified as a vegetative catalase 1 (KatA), which appeared 30 min after acid shock but was lost later in sporulation. CONCLUSIONS: Acid shock at pH 5 increased the heat resistance of spores subsequently formed in B. subtilis wild type. The catalase, KatA, was induced by acid shock early in sporulation, but since it was degraded later in sporulation, it appears to act to increase heat resistance by altering spore structure. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first proteomic study of acid shock in sporulating B. subtilis cells. The increasing spore heat resistance produced by acid shock may have significance for the heat resistance of spores formed in the food industry.  相似文献   

4.
Aims: To determine the effects of Mn levels in Bacillus megaterium sporulation and spores on spore resistance. Methods and Results: Bacillus megaterium was sporulated with no added MnCl2 and up to 1 mmol l?1 MnCl2. The resultant spores were purified and loosely bound Mn removed, and spore Mn levels were found to vary c. 100‐fold. The Mn level had no effect on spore γ‐radiation resistance, but B. megaterium spores with elevated Mn levels had higher resistance to UVC radiation (as did Bacillus subtilis spores), wet and dry heat and H2O2. However, levels of dipicolinic acid and the DNA‐protective α/β‐type small, acid‐soluble spore proteins were the same in spores with high and low Mn levels. Conclusions: Mn levels either in sporulation or in spores are important factors in determining levels of B. megaterium spore resistance to many agents, with the exception of γ‐radiation. Significance and Impact of the Study: The Mn level in sporulation is an important factor to consider when resistance properties of B. megaterium spores are examined, and will influence the UV resistance of B. subtilis spores, some of which are used as biological dosimeters.  相似文献   

5.
Demineralization reduced heat resistance of B. subtilis spores, but the pattern and magnitude of the reduction depended on sporulation temperature and on heating menstruum pH. The differences in heat resistance of native spores caused by sporulation temperature almost disappeared after demineralization. Demineralized spores were still susceptible to the heat-sensitizing effect of acidic pH.  相似文献   

6.
The optimum temperature for sporulation of a strain of Bacillus cereus was estimated at 30°–35°C, where the maximum yield of spores was obtained between 18 and 24 hours’ incubation. Sporulation was more rapid, but less extensive at 40°C and did not occur at all at 45°C. The heat resistance of the spores increased with the sporulation temperature from 20° to 40°C. The spores appear to be more susceptible to heat destruction in the early stage of spore production than after further incubation.  相似文献   

7.
Aims: To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H2O2), wet heat, and germicidal 254 nm and simulated environmental UV radiation. Methods and Results: Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280–400 and 320–400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H2O2 but not to wet heat or 254‐nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated. Conclusions: Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth’s surface and to H2O2. These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents. Significance and Impact of the Study: This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H2O2. This knowledge provides further insight into factors influencing spore resistance and inactivation.  相似文献   

8.
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.  相似文献   

9.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80°C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70°C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60°C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

10.

We found that spores of Bacillus amyloliquefaciens rank amongst the most resistant to high temperatures with a maximum dry heat tolerance determined at 420 °C. We found that this extreme heat resistance was also maintained after several generations suggesting that the DNA was able to replicate after exposure to these temperatures. Nonetheless, amplifying the bacterial DNA using BOXA1R and (GTG)5 primers was unsuccessful immediately after extreme heating, but was successful after incubation of the heated then cooled spores. Moreover, enzymes such as amylases and proteases were active directly after heating and spore regeneration, indicating that DNA coding for these enzymes were not degraded at these temperatures. Our results suggest that extensive DNA damage may occur in spores of B. amyloliquefaciens directly after an extreme heat shock. However, the successful germination of spores after inoculation and incubation indicates that these spores could have a very effective DNA repair mechanism, most likely protein-based, able to function after exposure to temperatures up to 420 °C. Therefore, we propose that B. amyloliquefaciens is one of the most heat resistant life forms known to science and can be used as a model organism for studying heat resistance and DNA repair. Furthermore, the extremely high temperature resistivity of these spores has exceptional consequences for general methodology, such as the use of dry heat sterilization and, therefore, virtually all studies in the broad area of high temperature biology.

  相似文献   

11.
AIMS: To determine the effect of sporulation temperature on Bacillus subtilis spore resistance and spore composition. METHODS AND RESULTS: Bacillus subtilis spores prepared at temperatures from 22 to 48 degrees C had identical amounts of dipicolinic acid and small, acid-soluble proteins but the core water content was lower in spores prepared at higher temperatures. As expected from this latter finding, spores prepared at higher temperatures were more resistant to wet heat than were spores prepared at lower temperatures. Spores prepared at higher temperatures were also more resistant to hydrogen peroxide, Betadine, formaldehyde, glutaraldehyde and a superoxidized water, Sterilox. However, spores prepared at high and low temperatures exhibited nearly identical resistance to u.v. radiation and dry heat. The cortex peptidoglycan in spores prepared at different temperatures showed very little difference in structure with only a small, albeit significant, increase in the percentage of muramic acid with a crosslink in spores prepared at higher temperatures. In contrast, there were readily detectable differences in the levels of coat proteins in spores prepared at different temperatures and the levels of at least one coat protein, CotA, fell significantly as the sporulation temperature increased. However, this latter change was not due to a reduction in cotA gene expression at higher temperatures. CONCLUSIONS: The temperature of sporulation affects a number of spore properties, including resistance to many different stress factors, and also results in significant alterations in the spore coat and cortex composition. SIGNIFICANCE AND IMPACT OF THE STUDY: The precise conditions for the formation of B. subtilis spores have a large effect on many spore properties.  相似文献   

12.
13.
Clostridium perfringens food poisoning is caused mainly by enterotoxigenic type A isolates that typically possess high spore heat resistance. Previous studies have shown that alpha/beta-type small, acid-soluble proteins (SASP) play a major role in the resistance of Bacillus subtilis and C. perfringens spores to moist heat, UV radiation, and some chemicals. Additional major factors in B. subtilis spore resistance are the spore's core water content and cortex peptidoglycan (PG) structure, with the latter properties modulated by the spm and dacB gene products and the sporulation temperature. In the current work, we have shown that the spm and dacB genes are expressed only during C. perfringens sporulation and have examined the effects of spm and dacB mutations and sporulation temperature on spore core water content and spore resistance to moist heat, UV radiation, and a number of chemicals. The results of these analyses indicate that for C. perfringens SM101 (i) core water content and, probably, cortex PG structure have little if any role in spore resistance to UV and formaldehyde, presumably because these spores' DNA is saturated with alpha/beta-type SASP; (ii) spore resistance to moist heat and nitrous acid is determined to a large extent by core water content and, probably, cortex structure; (iii) core water content and cortex PG cross-linking play little or no role in spore resistance to hydrogen peroxide; (iv) spore core water content decreases with higher sporulation temperatures, resulting in spores that are more resistant to moist heat; and (v) factors in addition to SpmAB, DacB, and sporulation temperature play roles in determining spore core water content and thus, spore resistance to moist heat.  相似文献   

14.
Spores ofBacillus subtilis A were produced at different temperatures (23°–49°C) and examined for a number of sporal characteristics. Spore heat resistance increased with sporulation temperature to 45°C, with spores grown at 49°C showing a dramatic reduction in resistance. Spore crops showed biphasic thermal death curves whether enumerated on germination medium with or without calcium dipicolinate. This strain produces both rough and smooth variants. Of the spores produced at 23°C, 99% were rough, had a density of 1.305, and an average core/core + cortex volume ratio of 0.1838. At 49°C, 99% were smooth, had a density of 1.275, and an average volume ratio of 0.3098. Between these temperatures both spore types were produced. There appeared to be no direct correlation with sporulation temperature, heat resistance, and dipicolinate content. There was an increase in both the magnesium and calcium contents to 45°C with a dramatic reduction at 49°C. The 1.305 density spores had higher calcium and dipicolinate contents than the 1.275 spores, although both spore types showed biphasic thermal death curves. The mechanisms involved in determining which spore type (rough/smooth) is produced at a specific growth temperature is unknown.Florida Agricultural Experiment Station Journal Series Number R-00312.  相似文献   

15.
Paenibacillus polymyxa SQR-21, which is antagonistic against Fusarium oxysporum, is used as a biocontrol agent and, when mixed with organic substances for solid fermentation, produces a bioorganic fertilizer. The spores of P. polymyxa prepared at different temperatures were characterized with respect to the dipicolinic acid content, heat resistance, fatty acid composition and germination. Spores prepared at 37°C showed higher heat resistance than those prepared at 25 and 30°C. However, the germination rate was negatively correlated with the sporulation temperature. The maximum germination rate of the spores prepared at 25°C was 1.3-times higher than the spores prepared at 30°C. The sporulation temperature thus affects the resistance and germination properties of P. polymyxa spores. These results are useful for the production of improved bio-organic fertilizer.  相似文献   

16.
17.
The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory.  相似文献   

18.
Streptomyces antibioticus ETHZ 7451 formed spores in cultures grown in a liquid medium from either a spore or a mycelium inoculum. The spores formed were similar to those formed on surface-grown cultures, except for reduced heat resistance. Both types of spores were sensitive to lysozyme, which is unusual for Streptomyces spores. Glucose and other carbon sources, which promoted different growth rates, did not affect sporulation efficiency. Nitrogen sources, such as casamino acids, that allowed high growth rates suppressed the sporulation. A remarkable repression was also observed in media with some nitrogen sources that promoted noticeably lower growth rates. In permissive media, with nitrogen sources that permitted relatively high growth rates, sporulation was conditioned to the consumption of ammonium in the medium, but not to that of other nitrogen sources, such as asparagine. Phosphate did not show a repressive effect on sporulation in the assayed conditions.  相似文献   

19.
Cells of Bacillus megaterium 27 were challenged by a 30-min heat shock at 45 degrees C during various sporulation stages and then shifted back to a temperature permissive for sporulation (27 degrees C), at which they developed spores. Heat shock applied at 120 min after the end of the exponential phase induced synthesis of heat shock proteins (HSPs) in the sporangia and delayed the inactivation of spores at 85 degrees C. Several HSPs, mainly HSP 70, could be detected in the cytoplasm of these spores. An analogous HSP, the main HSP induced by increased temperature during growth, belongs to the GroEL group according to its N-terminal sequence. The identity of this protein was confirmed by Western blot (immunoblot) analysis with polyclonal antibodies against B. subtilis GroEL. Sporangia treated by heat shock immediately or 240 min after exponential phase also synthesized HSPs, but none of them could be detected in the spores in an appreciable amount. These spores showed only a slightly increased heat resistance.  相似文献   

20.
The inactivation of bacterial endospores by hydrostatic pressure requires the combined application of heat and pressure. We have determined the resistance of spores of 14 food isolates and 5 laboratory strains of Bacillus subtilis, B. amyloliquefaciens, and B. licheniformis to treatments with pressure and temperature (200 to 800 MPa and 60 to 80 degrees C) in mashed carrots. A large variation in the pressure resistance of spores was observed, and their reduction by treatments with 800 MPa and 70 degrees C for 4 min ranged from more than 6 log units to no reduction. The sporulation conditions further influenced their pressure resistance. The loss of dipicolinic acid (DPA) from spores that varied in their pressure resistance was determined, and spore sublethal injury was assessed by determination of the detection times for individual spores. Treatment of spores with pressure and temperature resulted in DPA-free, phase-bright spores. These spores were sensitive to moderate heat and exhibited strongly increased detection times as judged by the time required for single spores to grow to visible turbidity of the growth medium. The role of DPA in heat and pressure resistance was further substantiated by the use of the DPA-deficient mutant strain B. subtilis CIP 76.26. Taken together, these results indicate that inactivation of spores by combined pressure and temperature processing is achieved by a two-stage mechanism that does not involve germination. At a pressure between 600 and 800 MPa and a temperature greater than 60 degrees C, DPA is released predominantly by a physicochemical rather than a physiological process, and the DPA-free spores are inactivated by moderate heat independent of the pressure level. Relevant target organisms for pressure and temperature treatment of foods are proposed, namely, strains of B. amyloliquefaciens, which form highly pressure-resistant spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号