首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Unlike many other animals whose sex ratios have been studied, parasitic wasps are able to determine the sex of their offspring. It is known that parasitic wasps sometimes produce different offspring sex ratios on different sized hosts. A model is constructed which includes the choice of accepting or rejecting a host as well as the choice of sex of offspring. The best reproductive strategy satisfies MacArthur's “product rule” for sex ratios and Charnov's “marginal value theorem” for optimal foraging. The model can be used to show that optimal sex ratio may vary with host density and size distribution.  相似文献   

4.
5.
Limb Development and Regeneration   总被引:1,自引:0,他引:1  
Experiments on developing and regenerating vertebrate limbshave led to the idea that pattern formation and growth controlare causally linked. The mechanism by which position-specificgrowth occurs is termed intercalation, and evidence is presentedthat implicates intercalation in the initiation, maintenanceand cessation of growth during limb formation. We conclude thatamong the variety of cell types present in limbs, only fibroblastshave been shown to possess the positional information necessaryfor intercalation. Hence we propose that the limb pattern isgenerated by intercalation between fibroblasts to give riseto a connective tissue scaffold, which in turn dictates thepositioning and morphogenesis of all of the differentiated celltypes of the limb. Finally, we review evidence that regenerativefailure among higher vertebrates is linked to defects in theintrinsic cellular mechanisms of growth control (intercalation)and conclude that progress towards the goal of stimulating regenerativelimb outgrowth in non-regenerating vertebrates will be contingentupon a better understanding of these intrinsic mechanisms.  相似文献   

6.
Within modern philosophy of biology the topic of mechanistic explanation has become a central theme for critical discussion. The neo-mechanical philosophers have developed accounts that emphasize intervention and manipulation as the central epistemic tools that allow gaining epistemic access upon the mechanisms and have argued that the processes of inter-field integration across disciplines can be understood through the analysis of mechanisms spanning multiple levels. In this paper I revisit current proposals on mechanistic explanation in order to show some of their limitations when dealing with developmental mechanisms. I basically argue that (i) developmental mechanisms cannot be accommodated within a framework centered upon the mutual manipulation principle, (ii) the distinction between causal relations vs. constitutive relations cannot be easily demarcated within developmental biology and (iii) the notion of "part" underlying the neo-mechanical accounts on explanation is not suitable for developmental biology.  相似文献   

7.
基因沉默与生长发育   总被引:3,自引:0,他引:3  
基因沉默是基因表达调控的一种重要机制,在各种生物中普遍存在。本文论述了基因沉默相关基因、机制及其与生长发育联系的最新研究进展。  相似文献   

8.
Homology in Development and the Development of the Homology Concept   总被引:2,自引:0,他引:2  
Homology is a central concept for Developmental Evolution. HereI argue that homology should be explained within the referenceprocesses of development and evolution; development becauseit is the proximate cause of morphological characters and evolutionbecause it deals with organic transformations and stability.This was already recognized by Hans Spemann in 1915. In a seminalessay "A history and critique of the homology concept" Spemannanalyzed the history and present problems of the homology concept.Here I will continue Spemann's project and analyze some of the20th century contributions to homology. I will end with a fewreflections about the connections between developmental processesand homology and conclude that developmental processes are inherentin (i) the assessment of homology, (ii) the explanation of homology,(iii) the origin of evolutionary innovations (incipient homologues),and (iv) can be considered homologous themselves.  相似文献   

9.
10.
11.
12.
13.
不对称性细胞分裂是一个母细胞通过一次分裂,产生两个不同命运的子细胞的分裂方式,是单细胞生物向多细胞生物进化的关键一步。根据现有的证据推论,不称性细胞分裂是在器官发育过程中产生细胞多样化的一种基本方式。Numb是第一个被发现决定多细胞生物不对称细胞分裂的信号蛋白。在果蝇中,Numb通过促进Notch泛素化拮抗Notch信号通路,从而决定子细胞的命运,后来的研究表明Numb是细胞内吞调节蛋白,并用通过内吞参与调节神经细胞的粘附,轴突的生长及细胞迁移等过程;并且发现Numb与肿瘤抑制基因p53、泛素化蛋白HDM2形成三聚体抑制p53的泛素化,从而调节肿瘤的恶性程度。本文系统地分析了Numb发现的历史及后来在脊椎动物中的作用和机制,重点介绍了Numb在神经发育过程中的功能。  相似文献   

14.
Auxin and Monocot Development   总被引:2,自引:0,他引:2  
Monocots are known to respond differently to auxinic herbicides; hence, certain herbicides kill broadleaf (i.e., dicot) weeds while leaving lawns (i.e., monocot grasses) intact. In addition, the characters that distinguish monocots from dicots involve structures whose development is controlled by auxin. However, the molecular mechanisms controlling auxin biosynthesis, homeostasis, transport, and signal transduction appear, so far, to be conserved between monocots and dicots, although there are differences in gene copy number and expression leading to diversification in function. This article provides an update on the conservation and diversification of the roles of genes controlling auxin biosynthesis, transport, and signal transduction in root, shoot, and reproductive development in rice and maize.Auxinic herbicides have been used for decades to control dicot weeds in domestic lawns (Fig. 1A), commercial golf courses, and acres of corn, wheat, and barley, yet it is not understand how auxinic herbicides selectively kill dicots and spare monocots (Grossmann 2000; Kelley and Reichers 2007). Monocots, in particular grasses, must perceive or respond differently to exogenous synthetic auxin than dicots. It has been proposed that this selectivity is because of either limited translocation or rapid degradation of exogenous auxin (Gauvrit and Gaillardon 1991; Monaco et al. 2002), altered vascular anatomy (Monaco et al. 2002), or altered perception of auxin in monocots (Kelley and Reichers 2007). To explain these differences, there is a need to further understand the molecular basis of auxin metabolism, transport, and signaling in monocots.Open in a separate windowFigure 1.Differences between monocots and dicots. (A) A dicot weed in a lawn of grasses. Note the difference in morphology of the leaves. (B) Germinating dicot (bean) seedling. Dicots have two cotyledons (cot). Reticulate venation is apparent in the leaves. The stem below the cotyledons is called the hypocotyl (hyp). (C) Germinating monocot (maize) seedling. Monocots have a single cotyledon called the coleoptile (col) in grasses. Parallel venation is apparent in the leaves. The stem below the coleoptile is called the mesocotyl (mes).Auxin, as we have seen in previous articles, plays a major role in vegetative, reproductive, and root development in the model dicot, Arabidopsis. However, monocots have a very different anatomy from dicots (Raven et al. 2005). Many of the characters that distinguish monocots and dicots involve structures whose development is controlled by auxin: (1) As the name implies, monocots have single cotyledons, whereas dicots have two cotyledons (Fig. 1B,C). Auxin transport during embryogenesis may play a role in this difference as cotyledon number defects are often seen in auxin transport mutants (reviewed in Chandler 2008). (2) The vasculature in leaves of dicots is reticulate, whereas the vasculature in monocots is parallel (Fig. 1). Auxin functions in vascular development because many mutants defective in auxin transport, biosynthesis, or signaling have vasculature defects (Scarpella and Meijer 2004). (3) Dicots often produce a primary tap root that produces lateral roots, whereas, in monocots, especially grasses, shoot-borne adventitious roots are the most prominent component of the root system leading to the characteristic fibrous root system (Fig. 2). Auxin induces lateral-root formation in dicots and adventitious root formation in grasses (Hochholdinger and Zimmermann 2008).Open in a separate windowFigure 2.The root system in monocots. (A) Maize seedling showing the primary root (1yR), which has many lateral roots (LR). The seminal roots (SR) are a type of adventitious root produced during embryonic development. Crown roots (CR) are produced from stem tissue. (B) The base of a maize plant showing prop roots (PR), which are adventitious roots produced from basal nodes of the stem later in development.It is not yet clear if auxin controls the differences in morphology seen in dicots versus monocots. However, both conservation and diversification of mechanisms of auxin biosynthesis, homeostasis, transport, and signal transduction have been discovered so far. This article highlights the similarities and the differences in the role of auxin in monocots compared with dicots. First, the genes in each of the pathways are introduced (Part I, Table I) and then the function of these genes in development is discussed with examples from the monocot grasses, maize, and rice (Part II).  相似文献   

15.
16.
RNA interference consists in specific mRNA degradation in response to introduction of a double-stranded RNA, homologous in nucleotide sequence. RNA interference was found in eukaryotes and is used in genomics as a powerful method to determine the functions of genes with known nucleotide sequences. RNA interference is considered as a tool of protection against viruses and harmful consequences of mobile elements' transposals. The involvement of the components of RNA interference is considered in spermatogenesis of Drosophila melanogaster and regulation of the expression of genes in Caenorhabditis elegans responsible for temporal patterns of development. The role of RNA interference in stem cell formation and functioning is also considered.  相似文献   

17.
《亚热带植物科学》近年发展态势及可持续发展思路   总被引:1,自引:1,他引:0  
总结了《亚热带植物科学》近年来在办刊中采取的主要改革措施,介绍其办刊成效,并就期刊定位、加强对外交流、网络化服务平台构建等方面,提出了《亚热带植物科学》可持续发展的建议。  相似文献   

18.
The developmental origins of health and disease hypothesis holds that inappropriate environmental cues in utero, a period marked by tremendous developmental sensitivity, facilitate cellular reprogramming to ultimately predispose disease in adulthood. In this review, we analyze if stress during early stages of development can affect future health. This has wide clinical importance, given that 5 million children have been conceived with assisted reproductive technologies (ART). Because the primary outcome of assisted reproduction procedures is delivery at term of a live, healthy baby, the postnatal effects occurring outside ofthe neonatal period are often overlooked. To this end, the long‐term outcome of ART is appropriately the most relevant concern of the field today. Evidence of adverse consequences is controversial. The majority of studies have concluded no obvious problems in IVF‐conceived children, although a number of isolated cases of imprinted diseases, cancers, or malformations have been reported. Given that animal studies suggest alteration of metabolic pathways following preimplantation stress, it will be of great importance to follow‐up ART individuals as they enter later stages of adult life. Birth Defects Research (Part C) 96:299–314, 2012. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
Plant MicroRNAs and Development   总被引:2,自引:0,他引:2  
Gang Wu 《遗传学报》2013,40(5):217-230
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号