首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Deltat) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (6 ms) triggered spikes at lower temporal precision (>or=6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs.  相似文献   

2.
A small modification to a voltage-clamp set-up for studying isolated neurons, and the use of simple hippocampal slices allowed stable recording of excitatory postsynaptic currents (EPSCs) that were evoked by stimulating the Shaffer's collaterals of individual CA1 pyramidal neurons. With the developed method EPSCs and focal extracellular potentials could be recorded simultaneously. It was confirmed that the EPSC consists of two components that are mediated via N-methyl-D-aspartate (NMDA)- and non-NMDA-receptors. The effects of different blockers of these receptors on the postsynaptic current were investigated, as were the effects of adenosine, which, depending on its concentration, could either depress or potentiate the synaptic transmission.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 731–738, November–December, 1991.  相似文献   

3.
In an analysis of the postsynaptic mechanism of heterosynaptic facilitation, changes in the amplitude of the excitatory postsynaptic current (EPSC) and the current evoked by application of acetylcholine (ACh current), acting on the adenylate cyclase system of the LC-1 and RC-1 neurons of the molluskPlanorbis corneus, were compared. Both responses are n-cholinergic and depend on the membrane conductivity for Na+ and K+. Application of serotonin led to a 100–300% increase in the amplitude of the EPSC and (in most cases) the ACh current. However, in 30% of the cases, the increase in the EPSC was accompanied by a decrease in the ACh current. This is probably due to the different contributions of Na+ and K+ to the mechanism of activation of the conductivity of th channel-receptor complex of the nonsynaptic cell membrane. The influence of serotonin on the EPSC and ACh current was simulated by the action of phosphodiesterase blockers and adenylate cyclase activators. Phosphodiesterase activators and protein kinase blockers reversibly inhibited the EPSC and ACh current. Thus, activation of the adenylate cyclase system, mediated by the action of serotonin, promotes the development of a postsynaptic mechanism of formation of heterosynaptic facilitation of the EPSC in the command neurons of the mollusk.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 676–683, November–December, 1991.  相似文献   

4.
The effect of extracellular nickel on the excitatory postsynaptic response at the insect neuromuscular junction was studied in the segmental muscle of the larval mealworm Tenebrio molitor. The response to L-glutamate applied iontophoretically (glutamate potential, GP) was potentiated in the presence of Ni2+ though the excitatory postsynaptic potential (EPSP) was reduced. It seems unlikely that Ni2+ acts at the same binding site as L-glutamate does since the value of the limiting slope of double logarithmic plots for the action of glutamate was increased in the presence of Ni2+. The potentiation of GP in the presence of Ni2+ cannot be ascribed to competition between Ni2+ and Ca2+ since GP amplitude did not show any dependence on the concentration of Ca2+. Nickel ions did not alter the reversal potential of excitatory postsynaptic current (EPSC) and glutamate current (GC) under the voltage clamp condition, whereas the amplitude of GC was potentiated in the presence of Ni2+. The time constant of the decay of EPSC showed a weak voltage dependency: the more depolarized the membrane, the more prolonged the time constant. In the presence of 1 mM Ni2+ the amplitude of miniature EPSCs (MEPSCs) increased and the half decay time was prolonged significantly. These results suggest that Ni2+ interacts with charged groups near the glutamate receptor-channel complex so that the kinetics of the channel are altered.  相似文献   

5.
The effects of L-glutamate and acetylcholine on the ventral muscle fibres of the larval mealworm Tenebrio molitor were studied by means of microelectrodes. Bath application of L-glutamate at concentrations higher than 1 × 10 4M suppressed excitatory postsynaptic potentials (EPSPs) and evoked both a depolarisation and a reduction in the input resistance of the muscle fibre. In contrast, acetylcholine chloride (up to 1 mM) had no effect at all. Circumscribed spots could be detected on the fibre surface where iontophoretic applications of L-glutamate caused transient depolarizations (glutamate potentials). Focal extracellular recordings revealed that the glutamate sensitive spots were identical with synaptic sites. The reversal potentials of the EPSP and the L-glutamate potential were identical. These results are compatible with the hypothesis that L-glutamate is an excitatory transmitter at the neuromuscular junction.  相似文献   

6.
S Hestrin  P Sah  R A Nicoll 《Neuron》1990,5(3):247-253
We studied with the whole-cell recording techniques, the mechanisms underlying the time course of the slow N-methyl-D-aspartate (NMDA), and fast non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. The rising phase of the NMDA receptor-mediated component of the EPSC as well as the decaying phase of the NMDA and non-NMDA component were highly temperature-sensitive, suggesting that neither of these processes is determined by free diffusion of transmitter. Moreover, glutamate uptake blockers enhanced the responses to exogenously applied glutamate, but had no effect on the decay of either the NMDA or non-NMDA components of the EPSCs. On the other hand, open channel blockers known to modify NMDA channel kinetics reduced the EPSC decay time. Thus, the present results support a model in which the rise time and decay of the NMDA component are determined primarily by slow channel kinetics and the decay of the non-NMDA component is due either to channel kinetics or to desensitization.  相似文献   

7.
Thiamine at a concentration of 1×10–14 to 1×10–4 M facilitated neuromuscular transmission at the glutaminergic synapse of the crayfish adapter, manifesting as increased amplitude and quantal content of excitatory postsynaptic potentials and raised frequency of miniature excitatory postsynaptic potentials. Thiamine augmented spontaneous electrical activity and the amplitude of synaptic potentials in the longitudinal muscle of guinea pig taenia coli. It was found from studying the effects of thiamine on the membrane potential of rat brain synaptosomes that its presynaptic action is brought about by depolarization of the nerve terminal membrane. Interaction between thiamine and the nerve endings was described by a Hill coefficient of 0.22–0.30, indicating that it has several binding sites within the structure of the receptor concerned.A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 621–629, September–October, 1986.  相似文献   

8.
Summary Dihydrofolate synthetase (EC 6.3.2.12) from N. gonorrhoeae was isolated and enzyme characteristics were determined. The purified enzyme was found quite stable when stored at –60 °C. About 50% of the enzyme activity wag destroyed within 6 weeks when kept at 4 °C. Maximum velocity was observed at pH 9.3. The enzyme required a monovalent cation, K+ or NH4 + , and divalent cation, Mg2+ or Mn2+ for its function. ATP at 5 mM concentration gave maximum activity. Km values for dihydropteroate and L-glutamate at pH 9.3 were 3.5 × 10–5 M and 6.5 × 10–4 M, respectively. Patterns of product inhibition by dihydrofolate were found to be non-competitive with respect to dihydropteroate, having a Ki value of 5.1 ± 0.8 × 10–4 M, and competitive with respect to L-glutamate, having a Ki value of 6.2 × 10–4 M.  相似文献   

9.
The influence of diadenosine polyphosphates (diadenosine tetraphosphate and diadenosine pentaphosphate) on synaptic transmission in theCA3-CA1 region was studied in rat hippocampal slices. We used combined recording of excitatory postsynaptic current, EPSC (byin situ whole-cell voltage clamp), and population action potential, PAP (in the hippocampalCA1 region). Diadenosine polyphosphates were shown to suppress both EPSC and PAP. This effect could be blocked by A1 adenosine receptor antagonist, and differed qualitatively from that produced by adenosine itself. As distinct from adenosine, prolonged application of diadenosine polyphosphates caused fas inhibition of PAP followed, by its slow partial recovery which could be removed by preincubation with protein kinase C inhibitor (staurosporine or sphingosine).Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 423–426, November–December, 1994.  相似文献   

10.
The effects of voltage-operated potassium channel blockers on evoked excitatory synaptic transmission were studied in theCA1 subfield of rat hippocampal slices. Incubation with 50 μM 4-aminopyridine (n=27), 300 nM α-dendrotoxin (n=3), or 5 to 25 mM tetraethylammonium (n=7) resulted in an enhancement of the peak amplitude of excitatory postsynaptic currents (EPSC) and significant prolongation of their decay at strong stimuli, due to an increased contribution of NMDA receptors into EPSC. In five experiments, the presence of an AMPA receptor antagonist, 4-aminopyridine, led to the appearance of NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSP). It is suggested that various modulations increasing presynaptic Ca2+ entry and, consequently, glutamate release may increase an NMDA component of synaptic transmission via excitation of polysynaptic excitatory pathways and/or due to glutamate spillover to distant extrasynaptic NMDA receptors.  相似文献   

11.
Several studies have shown that capsaicin could effectively regulate excitatory synaptic transmission in the central nervous system, but the assumption that this effect is mediated by TRPV1 vanilloid receptors (TRPV1Rs) has not been tested directly. To provide direct evidence, we compared the effect of capsaicin on excitatory synapses in wild type mice and TRPV1R knockouts. Using whole-cell patch-clamp techniques, excitatory postsynaptic currents (EPSCs) were recorded in granule cells of the dentate gyrus. First, we investigated the effect of capsaicin on EPSCs evoked by focal stimulation of fibers in the stratum moleculare. Bath application of 10 microM capsaicin reduced the amplitude of evoked EPSCs both in wild type and TRPV1R knockout animals to a similar extent. Treatment of the slices with the TRPV1R antagonist capsazepine (10 microM) alone, or together with the agonist capsaicin, also caused a decrease in the EPSC amplitude both in wild type and TRPV1R knockout animals. Both drugs appeared to affect the efficacy of excitatory synapses at presynaptic sites, since a significant increase was observed in paired-pulse ratio of EPSC amplitude after drug treatment. Next we examined the effect of capsaicin on spontaneously occurring EPSCs. This prototypic vanilloid ligand increased the frequency of events without changing their amplitude in wild type mice. Similar enhancement in the frequency without altering the amplitude of spontaneous EPSCs was observed in TRPV1R knockout mice. These data strongly argue against the hypothesis that capsaicin modulates excitatory synaptic transmission by activating TRPV1Rs, at least in the hippocampal network.  相似文献   

12.
The effects on synaptic transmission of glutamic acid diethylester (GDEE), a glutamate receptor blocker, were investigated by recording spike activity from single nerve fibers in the electroreceptor cells of the skate (Raja clavata) ampullae of Lorenzini. It was found that adding GDEE to the bathing medium led to a concentration-dependent reduction in or complete blockade of background and evoked receptor activity; 10–6 M GDEE was the minimum effective concentration. It was also shown that GDEE reversibly blocked postsynaptic response produced by excitatory amino acids: L-glutamate (L-GLU) and L-asparate (L-ASP). Findings suggest the involvement of L-GLU or a related substance in synaptic transmission in the ampullae of Lorenzini.I. P. Pavlov Institute of Physiology of the Academy of Science of the USSR, Leningrad, USSR. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 323–327, May–June, 1987.  相似文献   

13.
The effects of L-aspartic acid (L-ASP) on spontaneous and evoked activity in afferent nerve fibers were investigated by perfusing the basal membrane of sea skate electroreceptors (the ampullae of Lorenzini) with this substance. It was found that perfusion with physiological saline containing L-ASP exerted a primarily excitatory effect on afferent activity (threshold concentration: 10–7 M). When synaptic transmission was blocked by magnesium ions, activity was restored in the afferent fibers if L-ASP was added to the solution and spike activity persisted for longer; this would imply the presence of desensitizing processes in the postsynaptic receptors of the ampullae. Finding would lead to the conclusion that L-ASP and L-glutamate fulfill a set of criteria for likely neurotransmitters in the ampullae of Lorenzini.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 61–67, January–February, 1987.  相似文献   

14.
Phencyclidine (PCP) blocks glutamate-activated postsynaptic currents   总被引:1,自引:0,他引:1  
Phencyclidine (PCP) was tested on the metathoracic tibialis muscles of Locusta migratoria. In physiological solution, the peak amplitude of the excitatory postsynaptic currents (EPSCs) evoked by nerve stimulation was linearly related to membrane potential between -50 and -150 mV. The decay time constant of the EPSC (tau EPSC) was exponentially dependent on voltage and decreased with hyperpolarization. The membrane potential change required to produce an e-fold change in tau EPSC was 315 mV. PCP (5-40 microM) produced a concentration-dependent depression of both EPSC peak amplitude and tau EPSC. A slight nonlinearity in the current-voltage relationship could be discerned at high concentrations of PCP. The shortening of the decay time constant of EPSC (tau EPSC) occurred without significant change in the voltage sensitivity observed under control conditions. Under all experimental conditions, the decay of the EPSCs remained a single exponential of time. Fluctuation analysis indicated that 5 microM PCP shortens the lifetime of the glutamate-activated channels by 25.7 +/- 3%. PCP (10-80 microM) did not induced desensitization of the glutamate receptors. These results suggest that PCP interacts with the open conformation of ion channels activated by the glutamate receptor.  相似文献   

15.
Summary Both the fast and slow muscle fibres of advanced teleost fish are multiply innervated. The fraction of slow-fibre volume occupied by mitochondria is 31.3%, 25.5% and 24.6%, respectively, for the myotomal muscles of brook trout (Salvelinus fontinalis), crucian carp (Carassius carassius), and plaice (Pleuronectes platessa), respectively. The corresponding figures for the fast muscles of these species are 9.3%, 4.6% and 2.0%, respectively. Cytochrome-oxidase and citrate-synthetase activities in the fast muscles of 9 species of teleost range from 0.20–0.93 moles substrate utilised, g wet weight muscle-1 min-1 (at 15° C) or around 4–17% of that of the corresponding slow fibres. Ultrastructural analyses reveal a marked heterogeneity within the fast-fibre population. For example, the fraction of fibres with <1% or >10% mitochondria is 0,4,42% and 36, 12 and 0%, respectively, for trout, carp and plaice. In general, small fibres (<500 m2) have the highest and large fibres (>1,500 m2) the lowest mitochondrial densities. The complexity of mitochondrial cristae is reduced in fast compared to slow fibres.Hexokinase activities range from 0.4–2.5 in slow and from 0.08–0.7 moles, g wet weight-1 min-1 in fast muscles, indicating a wide variation in their capacity for aerobic glucose utilisation. Phosphofructokinase activities are 1.2 to 3.6 times higher in fast than slow muscles indicating a greater glycolytic potential. Lactate dehydrogenase activities are not correlated with either the predicted anaerobic scopes for activity or the anoxic tolerances of the species studied. The results indicate a considerable variation in the aerobic capacities and principal fuels supporting activity among the fast muscles of different species. Brook trout and crucian carp are known to recruit fast fibres at low swimming speeds. For these species the aerobic potential of the fast muscle is probably sufficient to meet the energy requirements of slow swimming.  相似文献   

16.
The primary auditory cortex is subject to the modulation of numerous neurotransmitters including norepinephrine (NE), which has been shown to decrease cellular excitability by yet unclear mechanisms. We investigated the possibility that NE directly affects excitatory glutamatergic synapses. We found that bath applications of NE (20 μM) decreased glutamatergic excitatory post-synaptic currents (EPSCs) in all cortical layers. Changes in the kinetics of synaptic EPSCs, invariance of pair pulse ratio and of the coefficient-of-variation, together with the decrease of responses to pressure-application of AMPA (500 μM), indicated the postsynaptic nature of the adrenergic effect. Pharmacological experiments suggested that the NE-induced depression of EPSCs is caused by the activation of α1 adrenoceptors, PLC, and a Ca2+-independent PKC. We speculate that the decrease in temporal cortex excitability might promote a posterior-to-anterior shift in cortical activation together with a decrease in spontaneous background activity, resulting eventually in more effective sensory processing.  相似文献   

17.

Background

Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. The glutamatergic excitatory interneurons (EINs) form the majority of the SG neuron population, but little is known about the mechanisms of signal processing in their synapses.

Methodology

To describe the functional organization and properties of excitatory synapses formed by SG EINs, we did non-invasive recordings from 183 pairs of monosynaptically connected neurons. An intact presynaptic SG EIN was specifically stimulated through the cell-attached pipette while the evoked EPSCs/EPSPs were recorded through perforated-patch from a postsynaptic neuron (laminae I-III).

Principal Findings

We found that the axon of an SG EIN forms multiple functional synapses on the dendrites of a postsynaptic neuron. In many cases, EPSPs evoked by stimulating an SG EIN were sufficient to elicit spikes in a postsynaptic neuron. EPSCs were carried through both Ca2+-permeable (CP) and Ca2+-impermeable (CI) AMPA receptors (AMPARs) and showed diverse forms of functional plasticity. The synaptic efficacy could be enhanced through both activation of silent synapses and strengthening of already active synapses. We have also found that a high input resistance (RIN, >0.5 GΩ) of the postsynaptic neuron is necessary for resolving distal dendritic EPSCs/EPSPs and correct estimation of their efficacy.

Conclusions/Significance

We conclude that the multiple synapses formed by an SG EIN on a postsynaptic neuron increase synaptic excitation and provide basis for diverse forms of plasticity. This functional organization can be important for sensory, i.e. nociceptive, processing in the spinal cord.  相似文献   

18.
The effects of the extended FLRFamide-like peptides, TNRNFLRFamide and SDRNFLRFamide, were studied on the stomach musculature of the crab Cancer borealis. Peptide-induced modulation of nerve-evoked contractions was used to screen muscles. All but 2 of the 17 muscles tested were modulated by the peptides. In several muscles of the pyloric region, peptides induced long-lasting myogenic activity. In other muscles, the peptides increased the amplitude of nerve-evoked contractions, excitatory junctional potentials, and excitatory junctional currents, but produced no apparent change in the input resistance of the muscle fibers. The threshold concentration was 10–10 M for TNRNFLRFamide and between 10–9 M to 10–8 M for SDRNFLRFamide. The absence of direct peptidecontaining innervation to these muscles and the wide-spread sensitivity of these muscles to the peptides suggest that TNRNFLRFamide and SDRNFLRFamide may be released from neurosecretory structures to modulate stomatogastric musculature hormonally. We speculate that hormonally released peptide will be crucial for maintaining appreciable muscle contraction in response to low-frequency and low-intensity motor discharge.Abbreviations cpv muscles cardiopyloric valve muscles - CG commissural ganglion - DG neuron dorsal gastric neuron - dgn dorsal gastric nerve - dvn dorsal ventricular nerve - EJC excitatory junctional current - EJP excitatory junctional potential - FaRPs FMRF-amide related peptides - gm muscles gastric mill muscles - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles pyloric muscles - STG stomatogastric ganglion  相似文献   

19.
Synaptic potentials of smooth muscles of the gastrointestinal tract arising in response to intramural stimulation were studied by intracellular recording of potentials and the sucrose gap method. The results showed that muscarinic cholinergic neuromuscular transmission in smooth-muscle cells of the gastrointestinal tract is purely excitatory. This transmission is most marked in the fundal part of the stomach. Adrenergic control of motor activity is manifested as excitation and inhibition of smooth muscles. Relations between these phenomena differ in different parts of the gastrointestinal tract. Depression of inhibitory adrenergic effects by apamin discloses excitation of smooth muscles which is not found under ordinary conditions. Like its inhibitory action, the excitatory action of noradrenalin is exerted as a result of activation of -adrenoreceptors. Nonadrenergic synaptic inhibition, which is more effective than adrenergic, is found in smooth-muscle cells of the circular layer of all parts of the gastrointestinal tract studied. Inhibitory postsynaptic potentials consists of two components: a first fast, and a second slow. Apamin blocks mainly the first phase of the synaptic response. During inhibition of nonadrenergic inhibitory postsynaptic potentials by apamin, noncholinergic synaptic excitation resistant to the action of blockers of cholinergic, adrenergic, and serotoninergic transmission is found in smooth muscles of the cecum. It is complex in character in this part of the intestine: an initial excitatory postsynaptic potential and a slow late depolarization wave. In smooth-muscle cells of other parts noncholinergic excitation is manifested only as a slow depolarization wave. The following types of synaptic influences of the autonomic nervous system on smooth-muscle cells of the gastrointestinal tract are therefore postulated: nonadrenergic excitatory, both cholinergic and noncholinergic; nonadrenergic inhibitory, adrenergic excitatory and adrenergic inhibitory, and also presynaptic modulation of neuromuscular transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 307–319, May–June, 1984.  相似文献   

20.
Responses of gastrocnemius–soleus motoneurones to stretches of the homonymous muscles were recorded intrasomatically in decerebrate cats; changes of membrane potential (MP) were evoked by smoothed trapezoid stretches of the muscles. Amplitudes of separate excitatory postsynaptic potentials (EPSPs) were defined via differences between values of MP at the end and beginning of the positive derivative waves, which were also used as basic elements in the model of the excitatory postsynaptic currents (EPSCs). EPSCs were assumed to be transformed into EPSPs by low-pass filtering properties of the somatic membrane; parameters of the filtering were firstly defined from analysis of Ia EPSP in the same cell and then were applied in model P m0. The model showed unsatisfactory quality in tracking slow components of MP; to overcome the disadvantage there was proposed model P m1 based on addition to P m0 the difference between two low-pass filtered signals MP and P m0 (the cutoff frequency 10 or 20 Hz). An overestimation of EPSPs’ amplitudes was corrected in model P m2. The mismatch in tracking slow changes of MP was assumed to be connected with summation of a great number of low-amplitude EPSPs generated at distal dendrites; information about waveform of separate EPSPs could disappear in this process. One can speculate that slow components of membrane depolarization at least partly are linked with the persistent inward currents in dendrites; variable and, sometimes, too fast decays in EPSPs seem to reflect inhibitory synaptic influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号