首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Applications of InterPro in protein annotation and genome analysis   总被引:2,自引:0,他引:2  
The applications of InterPro span a range of biologically important areas that includes automatic annotation of protein sequences and genome analysis. In automatic annotation of protein sequences InterPro has been utilised to provide reliable characterisation of sequences, identifying them as candidates for functional annotation. Rules based on the InterPro characterisation are stored and operated through a database called RuleBase. RuleBase is used as the main tool in the sequence database group at the EBI to apply automatic annotation to unknown sequences. The annotated sequences are stored and distributed in the TrEMBL protein sequence database. InterPro also provides a means to carry out statistical and comparative analyses of whole genomes. In the Proteome Analysis Database, InterPro analyses have been combined with other analyses based on CluSTr, the Gene Ontology (GO) and structural information on the proteins.  相似文献   

2.
MOTIVATION: Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. RESULTS: The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. AVAILABILITY: BFAB is available at http://mips.gsf.de/proj/bfab  相似文献   

3.
We have developed GFam, a platform for automatic annotation of gene/protein families. GFam provides a framework for genome initiatives and model organism resources to build domain-based families, derive meaningful functional labels and offers a seamless approach to propagate functional annotation across periodic genome updates. GFam is a hybrid approach that uses a greedy algorithm to chain component domains from InterPro annotation provided by its 12 member resources followed by a sequence-based connected component analysis of un-annotated sequence regions to derive consensus domain architecture for each sequence and subsequently generate families based on common architectures. Our integrated approach increases sequence coverage by 7.2 percentage points and residue coverage by 14.6 percentage points higher than the coverage relative to the best single-constituent database within InterPro for the proteome of Arabidopsis. The true power of GFam lies in maximizing annotation provided by the different InterPro data sources that offer resource-specific coverage for different regions of a sequence. GFam’s capability to capture higher sequence and residue coverage can be useful for genome annotation, comparative genomics and functional studies. GFam is a general-purpose software and can be used for any collection of protein sequences. The software is open source and can be obtained from http://www.paccanarolab.org/software/gfam/.  相似文献   

4.
SUMMARY: The CluSTr database employs a fully automatic single-linkage hierarchical clustering method based on a similarity matrix. In order to compute the matrix, first all-against-all pair-wise comparisons between protein sequences are computed using the Smith-Waterman algorithm. The statistical significance of the similarity scores is then assessed using a Monte Carlo analysis, yielding Z-values, which are used to populate the matrix. This paper describes automated annotation experiments that quantify the predictive power and hence the biological relevance of the CluSTr data. The experiments utilized the UniProt data-mining framework to derive annotation predictions using combinations of InterPro and CluSTr. We show that this combination of data sources greatly increases the precision of predictions made by the data-mining framework, compared with the use of InterPro data alone. We conclude that the CluSTr approach to clustering proteins makes a valuable contribution to traditional protein classifications. AVAILABILITY: http://www.ebi.ac.uk/clustr/.  相似文献   

5.
The Genome Annotation Assessment Project tested current methods of gene identification, including a critical assessment of the accuracy of different methods. Two new databases have provided new resources for gene annotation: these are the InterPro database of protein domains and motifs, and the Gene Ontology database for terms that describe the molecular functions and biological roles of gene products. Efforts in genome annotation are most often based upon advances in computer systems that are specifically designed to deal with the tremendous amounts of data being generated by current sequencing projects. These efforts in analysis are being linked to new ways of visualizing computationally annotated genomes.  相似文献   

6.
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.  相似文献   

7.
8.
The SWISS-PROT group at EBI has developed the Proteome Analysis Database utilising existing resources and providing comparative analysis of the predicted protein coding sequences of the complete genomes of bacteria, archaea and eukaryotes (http://www.ebi.ac. uk/proteome/). The two main projects used, InterPro and CluSTr, give a new perspective on families, domains and sites and cover 31-67% (InterPro statistics) of the proteins from each of the complete genomes. CluSTr covers the three complete eukaryotic genomes and the incomplete human genome data. The Proteome Analysis Database is accompanied by a program that has been designed to carry out InterPro proteome comparisons for any one proteome against any other one or more of the proteomes in the database.  相似文献   

9.
InterPro was developed as a new integrated documentation resource for protein families, domains and functional sites to rationalize the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects and has applications in computational functional classification of newly determined sequences lacking biochemical characterization and in comparative genome analysis. InterPro contains over 3500 entries, with more than 1000000 hits in SWISS-PROT and TrEMBL. The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for whole proteome analysis of the pathogenic microorganism, Mycobacterium tuberculosis, and comparison with the predicted protein coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. 64.8% of the M. tuberculosis proteins in the proteome matched InterPro entries, and these could be classified according to function. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains, and the most highly represented families in each organism. InterPro thus provides a useful tool for global views of whole proteomes and their compositions.  相似文献   

10.
Automated genome sequence analysis and annotation.   总被引:5,自引:0,他引:5  
MOTIVATION: Large-scale genome projects generate a rapidly increasing number of sequences, most of them biochemically uncharacterized. Research in bioinformatics contributes to the development of methods for the computational characterization of these sequences. However, the installation and application of these methods require experience and are time consuming. RESULTS: We present here an automatic system for preliminary functional annotation of protein sequences that has been applied to the analysis of sets of sequences from complete genomes, both to refine overall performance and to make new discoveries comparable to those made by human experts. The GeneQuiz system includes a Web-based browser that allows examination of the evidence leading to an automatic annotation and offers additional information, views of the results, and links to biological databases that complement the automatic analysis. System structure and operating principles concerning the use of multiple sequence databases, underlying sequence analysis tools, lexical analyses of database annotations and decision criteria for functional assignments are detailed. The system makes automatic quality assessments of results based on prior experience with the underlying sequence analysis tools; overall error rates in functional assignment are estimated at 2.5-5% for cases annotated with highest reliability ('clear' cases). Sources of over-interpretation of results are discussed with proposals for improvement. A conservative definition for reporting 'new findings' that takes account of database maturity is presented along with examples of possible kinds of discoveries (new function, family and superfamily) made by the system. System performance in relation to sequence database coverage, database dynamics and database search methods is analysed, demonstrating the inherent advantages of an integrated automatic approach using multiple databases and search methods applied in an objective and repeatable manner. AVAILABILITY: The GeneQuiz system is publicly available for analysis of protein sequences through a Web server at http://www.sander.ebi.ac. uk/gqsrv/submit  相似文献   

11.
The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.  相似文献   

12.
A new tool called System for Automated Bacterial Integrated Annotation--SABIA (SABIA being a very well-known bird in Brazil) was developed for the assembly and annotation of bacterial genomes. This system performs automatic tasks of assembly analysis, ORFs identification/analysis, and extragenic region analyses. Genome assembly and contig automatic annotation data are also available in the same working environment. The system integrates several public domains and newly developed software programs capable of dealing with several types of databases, and it is portable to other operational systems. These programs interact with most of the well-known biological database/softwares, such as Glimmer, Genemark, the BLAST family programs, InterPro, COG, Kegg, PSORT, GO, tRNAScan and RBSFinder, and can also be used to identify metabolic pathways.  相似文献   

13.
The Proteome Analysis database (http://www.ebi.ac.uk/proteome/) has been developed by the Sequence Database Group at EBI utilizing existing resources and providing comparative analysis of the predicted protein coding sequences of the complete genomes of bacteria, archeae and eukaryotes. Three main projects are used, InterPro, CluSTr and GO Slim, to give an overview on families, domains, sites, and functions of the proteins from each of the complete genomes. Complete proteome analysis is available for a total of 89 proteome sets. A specifically designed application enables InterPro proteome comparisons for any one proteome against any other one or more of the proteomes in the database.  相似文献   

14.
15.
The complete human genome sequences in the public database provide ways to understand the blue print of life. As of June 29, 2006, 27 archaeal, 326 bacterial and 21 eukaryotes is complete genomes are available and the sequencing for 316 bacterial, 24 archaeal, 126 eukaryotic genomes are in progress. The traditional biochemical/molecular experiments can assign accurate functions for genes in these genomes. However, the process is time-consuming and costly. Despite several efforts, only 50-60 % of genes have been annotated in most completely sequenced genomes. Automated genome sequence analysis and annotation may provide ways to understand genomes. Thus, determination of protein function is one of the challenging problems of the post-genome era. This demands bioinformatics to predict functions of un-annotated protein sequences by developing efficient tools. Here, we discuss some of the recent and popular approaches developed in Bioinformatics to predict functions for hypothetical proteins.  相似文献   

16.
Nucleic acid sequences from genome sequencing projects are submitted as raw data, from which biologists attempt to elucidate the function of the predicted gene products. The protein sequences are stored in public databases, such as the UniProt Knowledgebase (UniProtKB), where curators try to add predicted and experimental functional information. Protein function prediction can be done using sequence similarity searches, but an alternative approach is to use protein signatures, which classify proteins into families and domains. The major protein signature databases are available through the integrated InterPro database, which provides a classification of UniProtKB sequences. As well as characterization of proteins through protein families, many researchers are interested in analyzing the complete set of proteins from a genome (i.e. the proteome), and there are databases and resources that provide non-redundant proteome sets and analyses of proteins from organisms with completely sequenced genomes. This article reviews the tools and resources available on the web for single and large-scale protein characterization and whole proteome analysis.  相似文献   

17.
The recognition of remote protein homologies is a major aspect of the structural and functional annotation of newly determined genomes. Here we benchmark the coverage and error rate of genome annotation using the widely used homology-searching program PSI-BLAST (position-specific iterated basic local alignment search tool). This study evaluates the one-to-many success rate for recognition, as often there are several homologues in the database and only one needs to be identified for annotating the sequence. In contrast, previous benchmarks considered one-to-one recognition in which a single query was required to find a particular target. The benchmark constructs a model genome from the full sequences of the structural classification of protein (SCOP) database and searches against a target library of remote homologous domains (<20 % identity). The structural benchmark provides a reliable list of correct and false homology assignments. PSI-BLAST successfully annotated 40 % of the domains in the model genome that had at least one homologue in the target library. This coverage is more than three times that if one-to-one recognition is evaluated (11 % coverage of domains). Although a structural benchmark was used, the results equally apply to just sequence homology searches. Accordingly, structural and sequence assignments were made to the sequences of Mycoplasma genitalium and Mycobacterium tuberculosis (see http://www.bmm.icnet. uk). The extent of missed assignments and of new superfamilies can be estimated for these genomes for both structural and functional annotations.  相似文献   

18.
Functional annotation is routinely performed for large-scale genomics projects and databases. Researchers working on more specific problems, for instance on an individual pathway or complex, also need to be able to quickly, completely and accurately annotate sequences. The Bioverse sequence annotation server (http://bioverse.compbio.washington.edu) provides a web-based interface to allow users to submit protein sequences to the Bioverse framework. Sequences are functionally and structurally annotated and potential contextual annotations are provided. Researchers can also submit candidate genomes for annotation of all proteins encoded by the genome (proteome).  相似文献   

19.
InterPro, an integrated documentation resource for protein families, protein domains, and functional sites, was developed to amalgamate the individual efforts of the PROSITE, PRINTS, Pfam, and ProDom databases. InterPro can be used for the computational functional classification of newly determined amino acid sequences that lack biochemical characterization and for comparative genome analysis. InterPro contains over 3500 entries for more than 1 000 000 hits in SWISS-PROT and TrEMBL. The database is accessible for text-and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for the complete analysis of the proteome of the pathogenic microorganism Mycobacterium tuberculosis and the comparison with the predicted protein-coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. It was found that 64.8% of proteins in the proteome of M. tuberculosis matched InterPro entries and can be classified by their functions. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains and on the most highly represented protein families in each organism. Thus, InterPro is a useful tool for general comparison of complete proteomes and their compositions.  相似文献   

20.
The ProDom database is a comprehensive set of protein domain families automatically generated from the SWISS-PROT and TrEMBL sequence databases. An associated database, ProDom-CG, has been derived as a restriction of ProDom to completely sequenced genomes. The ProDom construction method is based on iterative PSI-BLAST searches and multiple alignments are generated for each domain family. The ProDom web server provides the user with a set of tools to visualise multiple alignments, phylogenetic trees and domain architectures of proteins, as well as a BLAST-based server to analyse new sequences for homologous domains. The comprehensive nature of ProDom makes it particularly useful to help sustain the growth of InterPro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号