首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Release of large amounts of citric acid from specialized root clusters (proteoid roots) of phosphorus (P)-deficient white lupin (Lupinus albus L.) is an efficient strategy for chemical mobilization of sparingly available P sources in the rhizosphere. The present study demonstrates that increased accumulation and exudation of citric acid and a concomitant release of protons were predominantly restricted to mature root clusters in the later stages of P deficiency. Inhibition of citrate exudation by exogenous application of anion-channel blockers such as ethacrynic- and anthracene-9-carboxylic acids may indicate involvement of an anion channel. Phosphorus-deficiency-induced accumulation and subsequent exudation of citric acid seem to be a consequence of both increased biosynthesis and reduced metabolization of citric acid in the proteoid root tissue, indicated by increased in-vitro activity and enzyme protein levels of phosphoenolpyruvate carboxylase (EC 4.1.1.31), and reduced activity of aconitase (EC 4.2.1.3) and root respiration. Similar to citric acid, acid phosphatase, which is secreted by roots and involved in the mobilization of the organic soil P fraction, was released predominantly from proteoid roots of P-deficient plants. Also 33Pi uptake per unit root fresh-weight was increased by approximately 50% in juvenile and mature proteoid root clusters compared to apical segments of non-proteoid roots. Kinetic studies revealed a K m of 30.7 μM for Pi uptake of non-proteoid root apices in P-sufficient plants, versus K m values of 8.5–8.6 μM for non-proteoid and juvenile proteoid roots under P-deficient conditions, suggesting the induction of a high-affinity Pi-uptake system. Obviously, P-deficiency-induced adaptations of white lupin, involved in P acquisition and mobilization of sparingly available P sources, are predominantly confined to proteoid roots, and moreover to distinct stages during proteoid root development. Received: 10 September 1998 / Accepted: 22 December 1998  相似文献   

2.
Cluster root formation in white lupin (Lupinus albus L.) isinduced mainly by phosphorus (P) starvation, and seems to beregulated by the endogenous P status of the plant. Increasedformation of cluster roots, when indole acetic acid is suppliedto the growth medium of P sufficient plants, and inhibitoryeffects of kinetin application suggest the involvement of endogenousphytohormones (auxins and cytokinins), which may act in an antagonisticmanner in the P-starvation response. Phosphorus deficiency-inducedadaptations of white lupin, involved in P acquisition and mobilizationof sparingly available P sources, are predominantly confinedto the cluster roots, and moreover to distinct stages duringtheir development. Increased accumulation and exudation of citrateand a concomitant release of protons were found to be mainlyrestricted to mature root clusters after prolonged culture (3–4weeks) under P-deficient conditions. Inhibition of citrate exudationby exogenous application of anion channel antagonists such asethacrynic- and anthracene-9-carboxylic acids may indicate involvementof an anion channel. Phosphorus deficiency-induced accumulationand subsequent exudation of citric acid seems to be a consequenceof both enhanced biosynthesis and reduced turnover of citricacid in the cluster root tissue, indicated by enhanced expressionof sucrose synthase, fructokinase, phosphoglucomutase, phosphoenol-pyruvatecarboxylase, but reduced activity of aconitase and slower rootrespiration. The release of acid phosphatase and of phenoliccompounds (isoflavonoids) as well as the induction of a putativehigh-affinity P uptake system was more highly expressed in juvenile,mature and even senescent cluster regions than in apical zonesof non-proteoid roots. An AFLP-cDNA library for cluster root-specificgene expression was constructed to assist in the identificationof further genes involved in cluster root development. Copyright2000 Annals of Botany Company Acid phosphatase, auxin, citric acid, cluster roots, cytokinin, Lupinus albus L., P acquisition, P uptake, root exudates  相似文献   

3.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

4.
Acid phosphatase activity in phosphorus-deficient white lupin roots   总被引:15,自引:0,他引:15  
White lupin ( Lupinus albus L.) develops proteoid roots when grown in phosphorus (P)-deficient conditions. These short, lateral, densely clustered roots are adapted to increase P availability. Previous studies from our laboratory have shown proteoid roots have higher rates of non-photosynthetic carbon fixation than normal roots and altered metabolism to support organic acid exudation, which serves to solubilize P in the rhizosphere. The present work indicates that proteoid roots possess additional adaptations for increasing P availability and possibly for conserving P in the plant. Roots from P-deficient (–P) plants had significantly greater acid phosphatase activity in both root extracts and root exudates than comparable samples from P-sufficient (+P) plants beginning 10 d after emergence. The increase in activity in –P plants was most pronounced in the proteoid regions. In contrast, no induction of phytase activity was found in –P plants compared to +P plants. The number of proteoid roots present was not affected by the source of phosphorus supplied, whether organic or inorganic forms. Adding molybdate to the roots increased the number of proteoid roots in plants supplied with organic P, but not inorganic P. Increased acid phosphatase activity was detected in root exudates in the presence of organic P sources. Native-polyacrylamide gel electrophoresis demonstrated that under P-deficient conditions, a unique isoform of acid phosphatase was induced between 10 and 12 d after emergence. This isoform was found not only within the root, but it comprised the major form exuded from proteoid roots of –P plants. The fact that exudation of proteoid-root-specific acid phosphatase coincides with proteoid root development and increased exudation of organic acids indicates that white lupin has several coordinated adaptive strategies to P-deficient conditions.  相似文献   

5.
子叶磷在白羽扇豆缺磷适应性反应中的作用   总被引:5,自引:0,他引:5  
实验用液体培养的方法,对比分析了在不同供磷条件下,白羽扇豆子叶中的磷对植物生长发育的影响,以及排根和根尖中有机酸积累和分泌的作用,结果表明,子叶中的磷能使白羽扇豆在完全缺磷23d的环境中,不仅没有使干物质的积累减少,反而使干物质的积累略有增加,相反,如果没有子叶磷的供给,则使白羽扇豆在缺磷环境中产生强烈的抗胁迫反应,表现在干物质的积累明显下降,根系能产生大量的排根,排根能积累和分泌大量的柠檬酸,而根尖能积累和分泌萍果酸,在整个缺磷反应过程中,根尖中苹果酸的分泌要早于排根可柠檬酸的积累和分泌。  相似文献   

6.
White lupin ( Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.  相似文献   

7.
The internal concentration of isoflavonoids in white lupin (Lupinus albus) cluster roots and the exudation of isoflavonoids by these roots were investigated with respect to the effects of phosphorus (P) supply, root type and cluster-root developmental stage.To identify and quantify the major isoflavonoids exuded by white lupin roots, we used high-pressure liquid chromatography (HPLC) coupled to electrospray ionization (ESI) in mass spectrometry (MS).The major exuded isoflavonoids were identified as genistein and hydroxygenistein and their corresponding mono- and diglucoside conjugates. Exudation of isoflavonoids during the incubation period used was higher in P-deficient than in P-sufficient plants and higher in cluster roots than in noncluster roots. The peak of exudation occurred in juvenile and immature cluster roots, while exudation decreased in mature cluster roots.Cluster-root exudation activity was characterized by a burst of isoflavonoids at the stage preceding the peak of organic acid exudation. The potential involvement of ATP-citrate lyase in controlling citrate and isoflavonoid exudation is discussed, as well as the possible impact of phenolics in repelling rhizosphere microbial citrate consumers.  相似文献   

8.
Gaume  Alain  Mächler  Felix  Frossard  Emmanuel 《Plant and Soil》2001,234(1):73-81
Root exudation of organic acids as Al-chelating compounds and P nutrition have been suggested to play a major role in Al-resistance in higher plants. Effects of Al exposure on maize plant growth, and organic acid root content and root exudation under various levels of P nutrition were examined. Sikuani, a Colombian maize cultivar tolerant to acid soils with high Al saturation, and Corso, a Swiss cultivar, were grown in sterile hydroponic conditions for 21 days. Al-caused inhibition of root growth was lower in Sikuani than in Corso. Al effect on plant growth was decreased with increasing P content in roots. Al content in roots increased with increasing P content and was higher in Sikuani than in Corso. When exposed to Al, the contents in root apices as well as the root exudation of citric and malic acids in Corso and citric, malic and succinic acids in Sikuani increased, and were higher in Sikuani than in Corso. Increased PEP carboxylase (PEPC) activity in root apices after Al exposure partially explained the variations of organic acid content in the roots. These Al-induced changes in PEPC activity, organic acid content and exudation were reduced in plants supplied with higher P concentrations during the 21 days prior to treatment. Increased secretion of organic acids after exposure to Al appeared to be specific to Al and was not totally explained by increased root content in organic acids.  相似文献   

9.
The availability of phosphorus (P) can limit net primary production (NPP) in tropical rainforests growing on highly weathered soils. Although it is well known that plant roots release organic acids to acquire P from P-deficient soils, the importance of organic acid exudation in P-limited tropical rainforests has rarely been verified. Study sites were located in two tropical montane rainforests (a P-deficient older soil and a P-rich younger soil) and a tropical lowland rainforest on Mt. Kinabalu, Borneo to analyze environmental control of organic acid exudation with respect to soil P availability, tree genus, and NPP. We quantified root exudation of oxalic, citric, and malic acids using in situ methods in which live fine roots were placed in syringes containing nutrient solution. Exudation rates of organic acids were greatest in the P-deficient soil in the tropical montane rainforest. The carbon (C) fluxes of organic acid exudation in the P-deficient soil (0.7?mol?C?m?2?month?1) represented 16.6% of the aboveground NPP, which was greater than those in the P-rich soil (3.1%) and in the lowland rainforest (4.7%), which exhibited higher NPP. The exudation rates of organic acids increased with increasing root surface area and tip number. A shift in vegetation composition toward dominance by tree species exhibiting a larger root surface area might contribute to the higher organic acid exudation observed in P-deficient soil. Our results quantitatively showed that tree roots can release greater quantities of organic acids in response to P deficiency in tropical rainforests.  相似文献   

10.
de Bakker  N.V.J.  Hemminga  M. A.  Van Soelen  J. 《Plant and Soil》1999,215(1):19-27
Incorporation of cover crops into cropping systems may contribute to a more efficient utilization of soil and fertilizer P by less P-efficient crops through exudation of P-mobilizing compounds by the roots of P-efficient plant species. The main objective of the present work was to test this hypothesis. First a method has been developed which allows the quantification of organic anion exudation from individual cluster roots formed by P-deficient white lupin (Lupinus albus L.). Lupin plants were grown in nutrient solution at 1 μM P and in a low P loess in small rhizotrons. Organic anions exuded from intact plants grown in nutrient solution were collected from individual cluster roots and root tips sealed in small compartments by an anion-exchange resin placed in nylon bags (resin-bags). Succinate was the dominant organic anion exuded followed by citrate and malate. The mean of citrate exudation-rate was 0.06 pmol mm−1 s−1 with exudation highly dependent on the citrate concentration and on the age of the cluster roots. Exudates from cluster roots and root tips grown at the soil surface (rhizotron-grown plants) were collected using overlayered resin–agar (resin mixed with agar). Citrate exudation from cluster roots was 10 times higher than that from root tips. Fractionation of P in the cluster root rhizosphere-soil indicates that white lupin can mobilize P not only from the available and acid-soluble P, but also from the stable residual soil P fractions. In pot experiments with an acid luvisol derived from loess low in available P, growth of wheat was significantly improved when mixed-cropped with white lupin due to improved P uptake. Both in mixed culture and in rotation wheat could benefit from the P mobilization capacity of white lupin, supporting the hypothesis above. Nine tropical leguminous cover crops and maize were grown in a pot experiment using a luvisol from Northern Nigeria low in available P. All plant species derived most of their P from the resin and bicarbonate-extractable inorganic P. Organic P (Po) accumulated particularly in the rhizosphere of all plant species. There was a significant negative correlation between the species-specific rhizosphere acid phosphatase activity and Po accumulation. Growth and P uptake of maize grown in rotation after legumes were enhanced indicating that improved P nutrition was a contributing factor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Tomato plants (Lycopersicon esculentum) grown in a complete nutrient solution for 8 days were transferred to a P-free solution of pH 6.0. Within 2 days of transfer the rate of alkalinization of the nutrient solution declined and by 4 days the solution had become acid. Nitrate transferred from roots to leaves was depressed over this period, and the rate of nitrate reductase activity in the leaves (the main site of assimilation of nitrate in tomato) had declined by 60% within 5 days of transfer. The activity of PEP carboxylase in the leaves of the P-deficient plants increased after 3 days, eventually becoming 3 times greater than in the leaves of plants adequately supplied with P. The PEP carboxylase activity in the roots of the P-deficient plants increased within 2 days, becoming 4 times greater after 8 days' growth. These results are discussed in relation to mechanisms for enhancement of P acquisition and maintenance of cation and anion uptake during P-deficiency.  相似文献   

12.
Kania  Angelika  Langlade  Nicolas  Martinoia  Enrico  Neumann  Günter 《Plant and Soil》2003,248(1-2):117-127
A possible contribution of alterations in metabolic sequences involved in citrate catabolism, to intracellular accumulation and subsequent release of citrate was investigated in cluster roots of phosphorus (P)-deficient white lupin (Lupinus albus L.). Citrate accumulation during maturation of root clusters was associated with decreased levels of intracellular soluble Pi and ATP, and with reduced rates of respiration. Inhibitor studies with KCN and salicylhydroxamic acid (SHAM) suggest a reduced capacity of both the cytochrome pathway and of the alternative respiration with a concomitant decrease of immunochemically detectable protein levels of the alternative oxidase. Reduced respiration seems to be related to a general impairment of the respiratory system, rather than to limitation of respiratory substrates such as Pi and adenylates, as indicated by the absence of stimulatory effects of the uncoupler CCCP. The citrate/malate ratio in juvenile root clusters with high rates of respiration and low inherent levels of citrate accumulation was increased by short-term application (4–8 h) of azide and SHAM as respiration inhibitors. During maturation of root clusters, a shift from intracellular malic acid to citric acid accumulation was associated also with down-regulation of ATP citrate lyase (ACL), which catalyzes cleavage of citrate into acetyl-CoA and oxaloacetate with a putative function as anapleurotic source for the production of acetyl-CoA under P-deficient conditions. Inhibition of nitrate uptake and assimilation is a general response to P limitation in many plant species including white lupin. Reduced consumption of the amino acceptor 2-oxoglutaric acid as a product of citrate turnover may therefore contribute to increased citrate accumulation. Accordingly, artificial inhibition of nitrate reduction by localized application of tungstate significantly increased the citrate/malate ratio in juvenile root clusters. Lowering the cytosolic pH by external application of propionate stimulated citrate and malate exudation in non-cluster lateral roots and in developing root clusters. This effect was reverted by preincubation with phosphonate to buffer the cytosol. The results suggest that acidification of the cytosol may be an important factor, triggering the transient release of citrate and protons from mature root clusters in P-deficient white lupin.  相似文献   

13.
A rhizobox experiment was conducted to examine the P acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P-deficient conditions. We aimed to identify whether cotton is physiologically efficient at acquiring P through release of protons, phosphatases or carboxylates. Plants were pre-grown in the upper compartment of rhizoboxes filled with a sand and soil mixture to create a dense root mat against a 53 μm polyester mesh. For each species, two P treatments (0 and 20 mg P kg?1) were applied to the upper compartment in order to create P-deficient and P-sufficient plants. At harvest, the upper compartment with intact plants was used for collection of root exudates while the lower soil compartment was sliced into thin layers (1 mm) parallel to the rhizoplane. Noticeable carboxylates release was only detected for white lupin. All P-deficient plants showed a capacity to acidify their rhizosphere soil to a distance of 3 mm. The activity of acid phosphatase was significantly enhanced in the soil-root interfaces of P-stressed cotton and wheat. Under P-deficient conditions, the P depletion zone of cotton from the lower soil compartment was narrowest (<2 mm) among the species. Phosphorus fractionation of the rhizosphere soil showed that P utilized by cotton mainly come from NaHCO3–Pi and NaOH–Po pools while wheat and white lupin markedly depleted NaHCO3–Pi and HCl–P pools, and the depletion zone extended to 3 mm. Wheat also depleted NaOH–Po to a significant level irrespective of P supply. The study suggests that acquisition of soil P is enhanced through P mobilization by root exudates for white lupin, and possibly proton release and extensive roots for wheat under P deficiency. In contrast, the P acquisition of cotton was associated with increased activity of phosphatases in rhizosphere soil.  相似文献   

14.
L. Sas  Z. Rengel  C. Tang 《Plant science》2001,160(6):61-1198
In symbiotically-grown legumes, rhizosphere acidification may be caused by a high cation/anion uptake ratio and the excretion of organic acids, the relative importance of the two processes depending on the phosphorus nutritional status of the plants. The present study examined the effect of P deficiency on extrusions of H+ and organic acid anions (OA) in relation to uptake of excess cations in N2-fixing white lupin (cv. Kiev Mutant). Plants were grown for 49 days in nutrient solutions treated with 1, 5 or 25 mmol P m−3 Na2HPO4 in a phytotron room. The increased formation of cluster roots occurred prior to a decrease in plant growth in response to P deficiency. The number of cluster roots was negatively correlated with tissue P concentrations below 2.0 g kg−1 in shoots and 3 g kg−1 in roots. Cluster roots generally had higher concentrations of Mg, Ca, N, Cu, Fe, and Mn but lower concentrations of K than non-cluster roots. Extrusion of protons and OA (90% citrate and 10% malate) from roots was highly dependent on P supply. The amounts of H+ extruded per unit root biomass decreased with time during the experiment. On the equimolar basis, H+ extrusion by P-deficient plants (grown at 1 and 5 mmol P m−3) were, on average, 2–3-fold greater than OA exudation. The excess cation content in plants was generally the highest at 1 mmol P m−3 and decreased with increasing P supply. The ratio of H+ release to excess cation uptake increased with decreasing P supply. The results suggest that increased exudation of OA due to P deficiency is associated with H+ extrusion but contributes only a part of total acidification.  相似文献   

15.
Sas L  Rengel Z  Tang C 《Annals of botany》2002,89(4):435-442
Nitrogen nutrition can influence cluster root formation in many wild species, but the effect of N form on cluster root formation and root exudation by white lupin is not known. In a solution culture study, we examined the effect of N nutrition (ammonium, nitrate, both or N2 fixation) on cluster root formation and H+ extrusion by white lupin plants under deficient and adequate P supply. The number of cluster roots increased greatly when plants were supplied with I microM P compared with 50 microM P, the increase being 7.8-fold for plants treated with (NH4)2SO4, 3-fold for plants treated with KNO3 and NH4NO3, and 2-4-fold for N2-fixing plants. Under P deficiency. NH4+-N supply resulted in production of a greater number and biomass of cluster roots than other N sources. Dry weight of cluster roots was 30 % higher than that of non-cluster roots in P-deficient plants treated with (NH4)2SO4 and NH4NO3. In plants treated with sufficient P (50 microM), the weight of non-cluster roots was approx. 90 % greater than that of cluster roots. Both total (micromol per plant h(-1)) and specific (micromol g(-1) root d. wt h(-1)) H+ extrusions were greatest from roots of plants supplied with (NH4)2SO4, followed by those supplied with NH4NO3 and N2 fixation, whereas plants receiving KNO3 had negative net H+ extrusion between the third and fifth week of growth (indicating uptake of protons or release of OH- ions). The rate of proton extrusion by NH4+-N-fed plants was similar under P-deficient and P-sufficient conditions. In contrast, proton exudation by N2-fixing plants and KNO3-treated plants was ten-fold greater under P deficiency than under P sufficiency. In comparison with P deficiency, plants treated with 50 microM P had a significantly higher concentration of P in roots, shoots and youngest expanded leaves (YEL). Compared with the N2 fixation and KNO3 treatments, total N concentration was highest in roots, shoots and YEL of plants supplied with (NH4)2SO4 and NH4NO3, regardless of P supply. Under P deficiency, K concentrations in roots decreased at all N supplies, especially in plants treated with (NH4)2SO4 and NH4NO3, which coincided with the greatest H+ extrusion at these P and N supplies. In conclusion, NH4-N nutrition stimulated cluster root formation and H+ extrusion by roots of P-deficient white lupin.  相似文献   

16.
Phosphorus (P) deficiency increased the secretion of phytases from roots of various plant species. The secretory phytases were collected with a dialysis membrane tube for 24 hours from roots of sixteen plant species grown with low or adequate supply of P in nutrient solutions. The activity of not only secretory phytase, but also acid phosphatase, increased with the low P treatment in all of the plant species examined. Secretion of phytase by the roots under P-deficient conditions was highest in Brachiaria decumbens CIAT 606, Stylosanthes guianensis CIAT 184 and tomato, moderate in Brachiaria brizantha CIAT6780, Stylosanthes guianensis CIAT 2950, alfalfa, white clover and orchard grass, and lowest in Andropgon gayanus CIAT 621, Stylosanthes capitata CIAT 10280, upland rice, timothy, redtop, alsike clover, red clover and white lupin plants. An immunoreactive protein band that reacted with a polyclonal antibody raised against wheat bran phytase, corresponding to molecular weight 35–40 kD, could be detected in seven of the species tested. These results indicate that the secretory phytase may provide an efficient mechanism for certain plants to utilize inositol hexaphosphate in soil.  相似文献   

17.
Ohwaki  Y.  Sugahara  K. 《Plant and Soil》1997,189(1):49-55
A chickpea cultivar, K-850, acidified the nutrient solution in response to iron deficiency, with subsequent re-greening of chlorotic leaves. No recovery of chlorosis was observed when the nutrient solution was buffered at a pH 6.3. During the period of acidification induced by iron deficiency, the roots of K-850 exuded more carboxylic acids than when supplied with sufficient iron. However, the rate of extrusion of protons was much higher than the rate of exudation of carboxylic acids during the acidification period. The extrusion of protons was inhibited by the addition of vanadate at the beginning of the decrease in pH. It appeared that acidification of the solution in response to iron deficiency was mediated by a proton-pumping ATPase, located at the plasma membrane. The presence of cations in the solution was essential for the extrusion of protons under iron deficiency, but the species of cation made no significant difference to the rate of extrusion of protons from roots. Therefore, we concluded that non-specific H+/cation antiport was involved in the acidification process.  相似文献   

18.
6-BA对缺磷白羽扇豆排根形成和有机酸分泌的影响   总被引:11,自引:0,他引:11  
缺磷条件下白羽扇豆能够形成排根,并增加有机酸分泌.但上述过程的调节机制尚不清楚.该文的结果表明,使用外源6-BA不影响缺磷白羽扇豆的生长和磷在体内的分配,但明显抑制了根簇的形成和有机酸分泌.经低浓度6-BA(10-8 mol/L)处理后转移至不含6-BA的缺磷营养液中继续培养的植株,其根簇形成和有机酸分泌得到恢复,甚至超过未经6-BA处理的缺磷植株;但高浓度6-BA(10-7 mol/L)对根簇形成和有机酸分泌的抑制作用不可恢复.对6-BA影响缺磷的白羽扇豆排根形成和有机酸分泌的可能机制进行了讨论.  相似文献   

19.
Shen  J.  Rengel  Z.  Tang  C.  Zhang  F. 《Plant and Soil》2003,248(1-2):199-206
The present study examined the effect of phosphorus (P) limitation on cluster root formation and exudation of carboxylates by N2-fixing white lupin (Lupinus albus L. cv. Kiev) grown in a P-deficient sandy soil. Plants received 10 (limited P) or 200 g P g–1 soil as FePO4 (adequate P) and were grown in a phytotron at 20/12 °C (12/12 h) for 76 days in soil columns. Cluster root formation was assessed and root exudates were collected at 9-day intervals. Shoot and root dry weights were higher in plants grown in the adequate-P compared to the limited-P treatment for 67 days. No clear difference in the total root length was observed between two P treatments before day 58. However, the specific root length increased rapidly from 17 m g–1 DW at day 40 to 28 m g–1 at day 49 in the P-limited plants, but decreased in the P-adequate plants. The effect of P limitation on enhancement of cluster root formation was observed from day 40 and reached the maximum at day 58. The number of cluster roots was negatively correlated with the P concentration in both roots and shoots. Phosphorus limitation increased exudation of citrate from day 40. The exudation of citrate displayed a cyclic pattern throughout the experiment, and appeared related to internal P concentration in plants, particularly P concentration in shoots. The sorption of exogenously added citrate in the soil was also examined. The amount of extractable citrate remained unchanged for 2 h, but decreased thereafter, suggesting that the soil had a low capacity to sorb citrate, and the rate of its decomposition by microorganisms was slow. Collecting solution leached through a soil column is a simple and reliable method to acquire root exudates from white lupin grown in soil. The results suggest that formation of cluster roots and exudation of citrate in white lupin are regulated by P concentration in shoots.  相似文献   

20.
Gaume  Alain  Mächler  Felix  De León  Carlos  Narro  Luis  Frossard  Emmanuel 《Plant and Soil》2001,228(2):253-264
We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P tolerant, an acid-tolerant and a low-P susceptible genotype of maize were compared with a Swiss commercial cultivar. The study found increased root development and increased exudation of acid phosphatase under P-deficient conditions in all maize genotypes, except for the Swiss cultivar. Effects on root formation and acid phosphatase were greater for the low-P tolerant than for the low-P susceptible, and the acid soil tolerant genotypes. Organic acid contents in root tissues were increased under P deficiency and related to increased PEPC activity. However, the increase in contents was associated with an increase in exudation for the low-P tolerant genotype only. The low-P susceptible genotype was characterized by high organic acid content in roots and low organic acid exudation. The organic acids content in the phloem exudates of shoots was related to root exudation under different P supply, to the difference between lines in organic acids root content, but not to the low-P tolerance or susceptibility of maize genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号