首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structures of the title compounds, M(S2COiC3H7)3, M = As(III), (1); Sb(III), (2); and Bi(III), (3) have been determined by three dimensional X-ray diffraction techniques and refined by a least square method. Crystals of (1) and (2) are isomorphous and both crystallize in the rhombohedral space group R3, with unit cell parameters for (1) ahex = 11.559(2), chex = 28.131(3) Å and for (2) ahex = 11.696(2) and chex = 28.135(2) Å, Z = 6. The central metal atom in both (1) and (2) is coordinated by three asymmetrically chelating xanthate ligands [AsS 2.305(2) and 2.978(2) Å and SbS 2.508(1) and 3.006(1) Å] which form a distorted octahedral environment consistent with the presence of a stereochemically active lone pair of electrons. Crystals of (3) are orthorhombic, space group Pnma, Z = 4 with dimensions a = 11.003(3), b = 20.833(4) and c = 9.428(2) Å. The environment of the bismuth atom in (3) is seven coordinate and is comprised of six sulphur atoms, derived from three asymmetrically coordinating xanthate ligands, and a bridging sulphur atom from a neighbouring molecule which results in the formation a polymeric array. For (1) final R and RW 0.050 and 0.047 respectively for 936 reflections [I ? 3σ(I); (2) R 0.040, Rw 0.040 for 1455 reflections I ? 2σ(I)]; and (3) R 0.052, Rw 0.039 for 1796 reflections [I ? 2σ(I).  相似文献   

2.
The crystal structures of the title compounds Sb(C9H6NO)2(S2COC2H5) (1) and Sb(S2COC2H5)3 (2) have been determined by three dimensional X-ray diffraction techniques and refined by a least squares method; final R 0.049 for 2911 reflections [I ? 3σ(I)] for (1) and R 0.047, Rw 0.046 for 846 reflections [I ? 2σ(I)] for (2). Crystals of (1) are triclinic, space group P1, a = 10.825(2), b = 11.131(2), c = 8.911(1) Å, α = 109.45(1), β = 95.92(1) and γ = 93.02(1)° with Z = 2. Crystals of (2) are rhombohedral, space group R3, arhomb = 10.138(3) Å and α = 103.43(2)°. The environment of the Sb atom in (1) is based on a pentagonal bipyramidal geometry consisting of the six donor atoms of the three chelating ligands and a stereochemically active lone-pair of electrons which occupies the remaining axial position. The xanthate ligand chelates the Sb atom almost symmetrically with two long SbS bonds of 3.059(2) and 3.171(2) Å. In contrast the xanthate ligands in (2) chelate the Sb atom with asymmetric SbS bonds of 2.511(2) and 3.002(3) Å.  相似文献   

3.
Gallium(III) tris-dialkyldithiophosphates, Ga[S2P(OR)2]3 (R = C2H5, n-C3H7, i-C3H7, n-C4H9 and i-C4H9) and gallium(III) tris-alkylenedithiophosphates, Ga(S2POGO)3 [G = -CH2C(C2H5)2CH2-, -C(CH3)2C(CH3)2 and -C(CH3)2CH2CH(CH3)] have been synthesized for the first time by the reactions of gallium(III) chloride with the alkali metal salt of the corresponding ligand in anhydrous benzene in 1:3 molar ratio respectively.These compounds are crystalline solids or viscous liquids and are soluble in common organic solvents, in which they show monomeric behaviour. Based on elemental analyses, molecular weight determinations, IR and NMR (1H and 31P) spectral data, chelate octahedral structures have been proposed for these derivatives.  相似文献   

4.
A new NNS tridentate ligand, S-allyl-3-(2-pyridyl-methylene)dithiocarbazate (HL) has been prepared. Three coordination complexes, Mn(L)2 (1), [Co(L)2]NO3 (2) and Ni(L)2 (3) (L is the deprotonated monoanionic form of HL) have been synthesized and characterized by elemental analysis, molar conductivity, FT-IR, 1H NMR and UV-Vis spectroscopy. 1 and 3 are neutral complexes, while 2 is cationic with nitrate as the counter ion. Single crystal X-ray diffraction analysis shows that bis-chelate complexes have a distorted octahedral geometry in which two ligands in thiolate tautomeric form coordinate to the metal center through N atoms of the pyridine and imino moieties and one S atom. Molecular geometry from X-ray analysis, molecular geometry optimization, atomic charges distribution and bond analysis of the ligand and complexes have been performed using the density functional theory (DFT) with the B3LYP functional.  相似文献   

5.
The synthesis, characterization, and application in asymmetric catalytic cyclopropanation of Rh(III) and Ir(III) complexes containing (Sa,RC,RC)-O,O′-[1,1′-binaphthyl-2,2′-diyl]-N,N′-bis[1-phenyl-ethyl]phosphoramidite (1) are reported. The X-ray structures of the half-sandwich complexes [MCl2(C5Me5)(1P)] (M = Rh, 2a; M = Ir, 2b) show that the metal-phosphoramidite bond is significantly shorter in the Ir(III) analog. Chloride abstraction from 2a (with CF3SO3SiMe3 or with CF3SO3Me) and from 2b (with AgSbF6) gives the cationic species [MCl(C5Me5)(1,2-η-1P)]+ (M = Rh, 3a; M = Ir, 3b), which display a secondary interaction between the metal and a dangling phenethyl group (NCH(CH3)Ph) of the phosphoramidite ligand, as indicated by NMR spectroscopic studies. Complexes 3a and 3b slowly decompose in solution. In the case of 3b, the binuclear species [Ir2Cl3(C5Me5)2]+ is slowly formed, as indicated by an X-ray study. Preliminary catalytic tests showed that 3a cyclopropanates styrene with moderate yield (35%) and diastereoselectivity (70:30 trans:cis ratio) and with 32% ee (for the trans isomer).  相似文献   

6.
X-ray crystal analyses of divalent copper, cobalt and calcium complexes of monoanionic (3-hydroxy-5-(hydroxymethyl)-2-methylisonicotinic acid) 5-phosphate (L1C8H9NO7P) revealed the chemical compositions of Cu ---L·3H2O(1), Co ---L·5H2O(2) and Ca·L2·7H2O (3) and the coordination structures which depend on the coordination abilities and chemical properties of the respective metal ions. Although 1 and 2 crystals showed similar features, i.e., presence of the metal ion at the crystallographic center of symmetry and octahedral six-coordination, the patterns of coordination with the ligand molecules differed. While direct coordination to the L carboxyl oxygen was observed in 1 crystals, all ligation positions in 2 crystals were occupied by water molecules. On the other hand, 3 crystals formed a pentagonal bipyramidal structure (seven-coordination), where oxygens of L phosphates and water molecules coordinated to the calcium ion. Each of the complex structures showed characteristic molecular packing depending on the pattern of coordination to the respective metal ion. L is monoanionic in all complex crystals, where the phosphate and carboxyl groups are deprotonated and pyridine nitrogen is protonated, and is neutralized by each metal ion. Crystal data: 1, monoclinic, space group P21/c, A = 5.4129(6), B = 10.515(2), C = 22.770(2) Å, β = 91.853(9)°, Z = 4, R = 0.0404 for 1834 observed reflections; 2, triclinic, space group

, c = 6.789(3) Å, α = 96.84(3), β = 109.10(3), γ = 100.50(2)°, Z = 2, R = 0.0684 for 1605 observed reflections; 3, triclinic, , a = 10.069(2), B = 14.501(3), c = 10.051(1) Å, α = 100.75(1), β = 97.28(2), γ = 76.18(2)°, Z = 2, R = 0.0540 for 3637 observed reflections.  相似文献   

7.
1-Methylimidazoline-2(3H)-thione (mimtH) and copper(I) thiocyanate in refluxing ethanolacetonitrile produce a colourless, diamagnetic complex, [Cu2(mimtH)4(SCN)2], which crystallises in an orthorhombic cell (a=8.0724(3), b=15.9545(6), c=21.3357(8) Å), space GROUP=Pbca, Z=4, final R=0.0319 from 2427 observed reflections F>4σc(F)). In the dimeric complex the copper(I) atoms are pseudo-tetrahedrally coordinated by pairs of, respectively, asymmetrically μ2-S bridging mimtH, terminal monodentate-S mimtH, (Cu---S=2.290(1) Å), and terminal monodentate-S thiocyanate, (Cu---S=2.332(1) Å). Each pair of ligands is trans-related to its partner across crystallographic centres of symmetry, consequently, each copper(I) atom has an identical S4 donor set with angles at the metal ranging from 95.9(1)° to 121.8(1)°. The centro-symmetric Cu2S2 core is rhomboid with Cu---S=2.377(1) and 2.457(1) Å, Cu---Sbr---Cu=72.6(1)° and Cu---Cu, Sbr---Sbr separation distances of 2.861(1) and 3.897(2) Å, respectively. Thermal decomposition of the complex in flowing air, (133–1000 °C), involves de-sulfurisation of mimtH and thiocyanate with concomitant production of copper(II) sulfide followed by oxidation to copper(II) oxide.  相似文献   

8.
Three new lanthanide thiostannates [Ln2(en)62-OH)2]Sn2S6 (Ln = Nd (1), Gd (2); en = ethylenediamine) and [Gd(dien)3]2[(Sn2S6)Cl2] (3) (dien = diethylenetriamine) were first synthesized by treating LnCl3 with SnCl4 and S under mild solvothermal conditions. Compounds 1 and 2 are isostructural. They consist of a binuclear lanthanide(III) complex [Ln2(en)62-OH)2]4+ cation and a dimeric [Sn2S6]4− anion. The anion is built up by two SnS4 tetrahedra sharing a common edge. The Nd3+ and Gd3+ ions are in an eight-coordinated environment forming distorted bicapped trigonal prisms. Compound 3 is composed of two monouclear [Gd(dien)3]3+ complex cations, a [Sn2S6]4− anion, and two chlorine ions. The Gd3+ ion has a nine-coordinated environment forming a distorted tricapped trigonal prism. In compounds 1-3, extensive hydrogen bonds are formed leading to three-dimensional networks of anions and cations. The band gaps of 2.42 eV for 1 and 3.17 eV for 2 have been derived from optical absorption spectra. The new lanthanide compounds might be the precursors for ternary lanthanide thiostannates by the heat treatment under nitrogen atmosphere to get rid of organic components.  相似文献   

9.
The synthesis of bis-cyclometalated aminocarboxylato complexes [M(α-aminocarboxylato)(ptpy)2] (M = Rh, 3, 4, 5; M = Ir, 6, 7, 8), ptpy = 2-(p-tolyl)pyridinato; aminocarboxylato = glycinato, l-alaninato, l-prolinato) from [{M(μ-Cl)(ptpy)2}2] (M = Rh, 1; M = Ir, 2) is described. The molecular structure of [Ir(l-alaninato)(ptpy)2] (7) was confirmed by a single-crystal X-ray diffraction study. Compound 7 crystallized from methanol-iso-hexane in the space group P21. For 7 the two diastereoisomers ΔIr, SC and ΛIr, SC were found crystallizing twice per unit. Absorption and emission spectra were recorded. The rhodium compounds are weak yellow-green and the iridium species strong green emitters.  相似文献   

10.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

11.
The structures of bis(1H+,5H+-S-methylisothiocarbonohydrazidium) di-μ-chlorooctachlorodibismuthate(III) tetrahydrate: (C2H10N4S)2(Bi2Cl10)· 4H2O (compound [I]) and of tris(1H+-S-methylisothiocarbonohydrazidium) esachlorobismuthate(III): (C2H9N4S)3(BiCl5.67I0.33) (compound [II]) were determined from single crystal X-ray diffractometer data. Both compounds crystallize as triclinic (P ); crystals [I] with Z = 1 formula unit in a cell of constants: A = 10.621(3), B = 9.989(5), C = 7.439(3) Å, α = 88.31(2), β = 84.51(2), γ = 68.88(2)°, final R = 0.0427 for 2229 unique reflections with I 2σ(I); crystals [II] with Z = 2 and cell dimensions: A = 14.109(4), B = 12.209(9), C = 8.206(7) Å, α = 103.54(3), β = 104.95(2), γ = 81.96(2)°, final R = 0.0411 for 3637 unique reflections (1 2σ(I)). The structure of [I] is built up of diprotonated organic cations, water molecules and dinuclear centrosymmetric [Bi2Cl10]4− anions held together by N-HCl, N-HO, O-HCl hydrogen bonds and Van der Waals interactions. The [Bi2Cl10]4− complex consists of two edge-sharing octahedra in which three pairs of bonds of similar length are observed (Bi-Clav = 2.602(5), 2.712(4), 2.855(5) Å). The structure of [II] consists of monoprotonated cations and [BiCl5.67I0.33]3− anions held together by a tridimensional network of hydrogen bonds. Each bismuth atom is octahedrally surrounded by six chlorine atoms, one of which is statistically substituted by a iodine atom.  相似文献   

12.
Combination of (1S,2S)-cyclopentanediylbis(diphenylphosphine) with [Ru(η4-C8H12){η3-(CH2)2CMe}2] afforded the chelate complex [Ru{η3-(CH2)2CMe}2{(1S,2S)-C5H8(PPh2)2}] (1), which gave (OC-6-13)-[RuCl2{(1S,2S)-C5H8(PPh2)2}{(1S,2S)-Ph2PCH(Ph)CH(Me)NH2}] (2) upon reaction with methanolic HCl in acetone, followed by the addition of the β-aminophosphine in DMF. The (P  N)2-chelated complexes (OC-6-13)-[RuCl2{(1S,2S)-Ph2PCH(Ph)CH(Me)NH2}2] (3) and (OC-6-13)-[RuCl2{(1R,2S)-Ph2PCH(Ph)CH(Me)NH2}2] (4) resulted from RuCl3 · 3H2O and the P,N ligands under reducing conditions. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction. Following activation by KOBu-t in isopropanol, compounds 24 catalyzed the enantioselective transfer hydrogenation of acetophenone with i-PrOH as the hydrogen source as well as the direct hydrogenation of the ketone by H2 in low to moderate e.e. (up to 67%).  相似文献   

13.
Gold compounds are being investigated as potential antitumor drugs. Some gold(III) derivatives have been shown to induce cell death in solid tumors but their mechanism of action differs from that of cisplatin, since most of these compounds do not bind to DNA. We have explored cellular events triggered by three different iminophosphorane-organogold(III) compounds in leukemia cells (a neutral compound with two chloride ligands [Au{κ2-C,N-C6H4(PPh2 = N(C6H5)-2}Cl2] 1, and two cationic compounds with either a dithiocarbamate ligand [Au{κ2-C,N-C6H4(PPh2 = N(C6H5)-2}(S2CN-Me2)]PF62, or a water-soluble phosphine and a chloride ligand [Au{κ2-C,N-C6H4(PPh2 = N(C6H5)-2}(P{Cp(m-C6H4-SO3Na)2}3) Cl]PF63). All three compounds showed higher toxicity against leukemia cells when compared to normal T-lymphocytes. Compounds 1 and 2 induced both necrosis and apoptosis, while 3 was mainly apoptotic. Necrotic cell death induced by 1 and 2 was Bax/Bak- and caspase-independent, while apoptosis induced by 3 was Bax/Bak-dependent. Reactive oxygen species (ROS) production at the mitochondrial level was a critical step in the antitumor effect of these compounds.  相似文献   

14.
Two new guaianolides, (1R,4R,5S,6R,7R,8S)-8,15-dihydroxyguaia-10(14),11(13)-dien-12,6-olide (1) and (1R,4R,5S,6R,7R,8S,11S)-8,15-dihydroxyguaia-10(14)-en-6,12-olide (2), and two known elemanolides, (4S,5R,6R,7R,8S,10R,11S)-11,13-dihydrovernolepin (3) and (5R,6R,7R,8S,10R,11S)-melitensin (4) were isolated from the aerial parts of Vernonia anthelmintica Willd. The structures of these compounds were determined on the basis of IR, UV, MS, 1D-NMR and 2D-NMR, and their absolute configurations were deduced using the CD exciton chirality method and single-crystal X-ray diffraction. The possible biosynthetic relationships of compounds 14 are postulated. Compounds 14 were evaluated for their cytotoxicity against HL-60 and SMMC-7721 cell lines.  相似文献   

15.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

16.
A series of fused cyclopropyl-4,5-dihydropyridazin-3-one (3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one) phenoxypiperidine analogs was designed and synthesized, leading to the identification of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one (R,S-4a) as a second-generation pyridazin-3-one H3R antagonist. Compound R,S-4a was a potent H3R functional antagonist in vivo in the rat dipsogenia model, demonstrated potent wake activity in the rat EEG/EMG model, and enhanced short-term memory in the rat social recognition memory model at doses as low as 0.03–0.3 mg/kg po.  相似文献   

17.
Two new homo- and hetero-dinuclear complexes, [Cu2L(im)](ClO4)34H2O (1) and [CuZnL(im)](ClO4)34H2O (2) (where Im=1H-1midazole and L = 3, 6, 9, 16, 19, 22-hexaaza-6, 19-bis(1H-imidazol-4-ylmethyl)tricycle[22, 2, 2, 211,14]triaconta-1, 11, 13, 24, 27, 29-hexaene) were synthesized and characterized as model compounds for the active site of copper(II)–zinc(II) superoxide dismutase (Cu2Zn2–SOD). X-ray crystal structure analysis revealed that the metal centers in both complexes exhibit distorted trigonal-bipyramid coordination geometry and the CuCu and CuZn distances are both 6.02 Å. Magnetic and ESR spectral measurements of 1 showed antiferromagnetic exchange interactions between the imidazolate-bridged Cu(II) ions. The ESR spectrum of 2 displays typical signals of mononuclear Cu(II) complex, demonstrating the formation of heterodinuclear complex 2 rather than a mixture of homodinuclear Cu(II)/Zn(II) complexes. pH-dependent ESR and UV–visible spectral measurements manifest that the imidazolate exists as a bridging ligand from pH 6 to 11 for both complexes. The IC50 values of 1.96 and 1.57 μM [per Cu(II) ion] for 1 and 2 suggest that they are good models for the Cu2Zn2–SOD.  相似文献   

18.
We have prepared the Mn(III) complexes rac-Na[Mn(EHPG)]·3H2O (1) and rac,meso-Na[Mn(EHPG)]·H2O (2), where H4EHPG is ethylenebis[(o-hydroxyphenyl)glycine], and determined their X-ray crystal structures. Complex 1 contains N(S,S)C(R,R) configurations at the N and C stereogenic centres, whilst in the unit cell of complex 2 there are two independent molecules, 2a (meso) and 2b (rac), with N(R,R)C(S,R) and N(R,R)C(S,S) configurations, respectively. Enantiomers of each complex are also present. The Mn(III) centres have Jahn-Teller-distorted octahedral geometry. The rac isomer has two long axial MnO(carboxylate) bonds (2.162-2.202 Å) and the equatorial plane contains two short MnN bonds (2.012-2.063 Å) trans to short MnO(phenolate) bonds (1.865-1.901 Å). The meso isomer has long axial MnN (2.194 Å) and MnO(carboxylate) (2.152 Å) bonds, and shorter equatorial MnN (2.005 Å) trans to MnO(phenolate) (1.901 Å) and MnO(carboxylate) (1.988 Å) trans to O(phenolate) (1.897 Å) bonds.  相似文献   

19.
Two novel monomeric [C18H17Cl3N2O2Fe] (1) and dimeric [C38H36N4O4Cl6Fe2] (2) Fe(III) tetradentate Schiff base complexes have been synthesized and their crystal structures have been determined by single crystal X-ray diffraction analysis. In complex (1) the Schiff base ligand coordinates toward one iron atom in a tetradentate mode and each iron atom is five coordinated with the coordination geometry around iron atom which can be described as a distorted square pyramid. The presence of a short (2.89 Å) non-bonding interatomic Fe···O distances between adjacent monomeric Fe(III) complexes results in the formation of a dimer. Structural analysis of compound (2) shows that the structure is a centrosymmetric dimer in which the six coordinated Fe(III) atoms are linked by μ-phenoxo bridges from one of the phenolic oxygen atoms of each Schiff base ligand to the opposite metal center. The variable-temperature (2-300 K) magnetic susceptibility (χ) data of these two compounds have been investigated. The results show that for both complexes Fe(III) centers are in the high spin configuration (S = 5/2) and indicate antiferromagnetic spin-exchange interaction between Fe(III) ions. The obtained results are briefly discussed using magnetostructural correlations developed for other class of iron(III) complexes.  相似文献   

20.
Transition metal complexes [Co(cyclen)(NH3)2](ClO4)3⋅H2O (cyclen = 1,4,7,10-tetraazacyclododecane) (2), [Co(NH3)5(OH2)](CF3SO3)3 (3) [Ni(NH3)6]Br2 (4) and [Ru(NH3)6]Cl3 (5) were tested against Sindbis infected baby hamster kidney (BHK) cells and show differential effects from the previously reported anti-viral complex [Co(NH3)6]Cl3 (1). The macrocyclic complex 2 and labile aqua complex 3 show either no or little effect on the survival on Sindbis virus-infected cells as compared to that for 1, which show a monotonic increase in % BHK cell survival. Nickel and ruthenium ammine complexes 4 and 5 had a moderate influence of cell survival. While the results showed some anti-viral activity for some of the structural variations, it appears that 1, with its potential to be a broad-spectrum anti-viral compound, occupies a unique position in its ability to both significantly enhance cell survival and to decrease viral expression of infected cells. We also show that 1 also shows anti-viral activity against Adenovirus lending support to the broad-spectrum potential of this complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号