首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human placental villus tissue contains opioid receptors and peptides. Kappa opioid receptors (the only type present in this tissue) were purified with retention of their binding properties. The purified kappa receptor is a glycoprotein with an apparent molecular weight of 63,000. Two opioid receptor mediated functions were identified in trophoblast tissue, namely regulation of acetylcholine and hormonal (human chorionic gonadotrophin and human placental lactogen) release. Placental content of kappa receptors increases with gestational age. Term placental content of kappa receptors correlates with route of delivery (higher in those abdominally obtained). Opioid use and/or abuse during pregnancy affects placental receptor content at delivery, as well as its mediated functions. Opioid peptides identified in placental extracts were beta-endorphin, methionine enkephalin, leucine enkephalin and dynorphins 1-8 and 1-13. Dynorphin 1-8 seem to be the predominant opioid peptide present in placental villus tissue.  相似文献   

2.
M S Ahmed  T Schoof  D H Zhou  C Quarles 《Life sciences》1989,45(25):2383-2393
Human placental villus tissue is non-innervated, yet it contains components of the opiate and cholinergic systems. We investigated whether opioids modulate a calcium dependent acetylcholine release from the villus tissue in a manner similar to that demonstrated by the parasympathetic nerve-smooth muscle junction. We reported that the kappa receptor agonist ethylketocyclazocine (EKC) inhibits acetylcholine release, and that the inhibition is reversed by the selective antagonist, Mr2266. Findings reported here substantiate the role of opioids as modulators of acetylcholine release from villus tissue. The nonselective agonist, morphine, also inhibits acetylcholine release. Inhibition caused by morphine is reversed by low concentrations of non-selective antagonists, naloxone and naltrexone. Naloxone at high concentrations potentiates the inhibition of acetylcholine release caused by morphine. In addition, the calcium channel blocker, diltiazem, was found to inhibit the release of acetylcholine. The combination of morphine and diltiazem resulted in a greater inhibition of acetylcholine release than by either alone. These results suggest that opiate cholinergic interactions occur in non-neural tissue with a mechanism similar to that known to occur at certain cholinergic synapses.  相似文献   

3.
The release of acetylcholine from Torpedo electric organ slices following their electrical stimulation was modulated by morphine, by the muscarinic antagonist atropine, and by the nicotinic antagonist tubocurarine. Addition of either atropine or tubocurarine in the presence of the acetylcholinesterase inhibitor phospholine iodide enhanced acetylcholine release. The effects of the two antagonists were additive, a result suggesting that the secreted acetylcholine regulates its own release by activating both muscarinic and nicotinic cholinergic receptors and that these receptors inhibit acetylcholine release by different mechanisms. The effects of opiates on acetylcholine release were examined under conditions in which the cholinergic modulation of release is blocked, i.e., in the presence of atropine and tubocurarine. These experiments revealed that electrically evoked release of acetylcholine is blocked by the opiate agonists morphine and levorphanol. However, the inhibitory effect of morphine on acetylcholine release was not reversed by the opioid antagonist naloxone. Furthermore, dextrorphan, the nonopioid stereoisomer of levorphanol, had the same inhibitory effect as its opioid counterpart. These findings suggest that the effects of opiates on electrically evoked release of acetylcholine are not mediated by opioid receptors. The possible mechanisms underlying these nonopioid effects of morphine and levorphanol are discussed.  相似文献   

4.
5.
Opioid ligands were investigated for their effect on hCG release from trophoblast tissue obtained from term human placenta. Data obtained indicate that opiate agonists stimulate in vitro basal hCG release from trophoblast tissue. The potency of these opioid agonists correspond to their kappa receptor selectivity, i.e., the greater the selectivity the lower is the effective concentration causing maximum stimulation. Opioid antagonists inhibit the release of hCG due to their reversal of the stimulation caused by endogenous opioid peptides. Potency of the antagonists correspond also to their kappa receptor selectivity. Antagonists reverse the stimulation of hCG release caused by agonists indicating that the ligand's action is mediated by the placental kappa opioid receptors. The bell shaped response curves for agonists and antagonists suggest that opioids play a role in the regulation of hCG release from trophoblast tissue, but other mechanism(s) may also exist.  相似文献   

6.
The human placental villus tissue contains opioid receptors and peptides. The opioid peptides extracted from the villus tissue were fractionated using reverse-phase high performance liquid chromatography and a radio-receptor assay. The presence of dynorphin 1-8 was corroborated by mass spectrometric production of (M + H) ion in the fast atom bombardment mode. This octa-peptide could be the natural ligand of the kappa opioid receptors present in the human placental villus tissue.  相似文献   

7.
The electrically evoked release of acetylcholine and its modulation via auto- and heteroreceptors were studied in primary cell cultures prepared from embryonic rat septum (ED 17). Cultures were grown for 1, 2 or 3 weeks on circular, poly D-lysine-coated glass coverslips. They developed a dense network of non-neuronal and neuronal cells, only some of which were immunopositive for choline acetyltransferase. To measure acetylcholine release, the cells on the coverslips were pre-incubated with [3H]choline (0.1 micromol/L), superfused with modified Krebs-Henseleit buffer at 25 degrees C and electrically stimulated twice for 2 min (S1, S2; 3 Hz, 0.5 ms, 90-100 mA). The electrically evoked overflow of [3H] from the cells consisted of approximately 80% of authentic [3H]Ach, was largely Ca2+-dependent and tetrodotoxin sensitive, and hence represents an action potential-evoked, exocytotic release of acetylcholine. Using pairs of selective agonists and antagonist added before S2, muscarinic autoreceptors, as well as inhibitory adenosine A1- and opioid mu-receptors, could be detected, whereas delta-opioid receptors were not found. Evoked [3H] overflow from cultures grown for 1 week, although Ca2+ dependent and tetrodotoxin sensitive, was insensitive to the muscarinic agonist oxotremorine, whereas the effect of oxotremorine on cells grown for 3 weeks was even more pronounced than that in 2-week-old cultures. In conclusion, similar to observations on rat septal tissue in vivo, acetylcholine release from septal cholinergic neurones grown in vitro is inhibited via muscarinic, adenosine A1 and mu-opioid receptors. This in vitro model may prove useful in the exploration of regulatory mechanisms underlying the expression of release modulating receptors on septal cholinergic neurones.  相似文献   

8.
Human placental opioid receptors were assayed using the radioactive opioid agonist, etorphine, to determine the number of binding sites in villous tissue membrane preparations. Significant differences in receptor concentration per milligram of protein of tissue were found between placentas obtained following vaginal or abdominal delivery (P less than 0.002). Labor itself did not alter apparent receptor numbers. In patients with maternal narcotic abuse during pregnancy, no opioid binding could be detected regardless of the mode of delivery, suggesting possible receptor down-regulation.  相似文献   

9.
The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.  相似文献   

10.
The tachykinin neurokinin 1 receptors (NK1Rs) regulation of acetylcholine release and its interaction with the enkephalin/mu opioid receptors (MORs) transmission was investigated in the limbic/prefrontal (PF) territory of the dorsal striatum. Using double immunohistochemistry, we first showed that in this territory, cholinergic interneurons contain tachykinin NK1Rs and co-express MORs in the last part of the light period (afternoon). In slices of the striatal limbic/PF territory, following suppression of the dopaminergic inhibitory control of acetylcholine release, application of the tachykinin NK1R antagonist, SSR240600, markedly reduced the NMDA-induced acetylcholine release in the morning but not in the afternoon when the enkephalin/MOR regulation is operational. In the afternoon, the NK1R antagonist response required the suppression of the enkephalin/MOR inhibitory control of acetylcholine release by βfunaltrexamine. The pharmacological profile of the tachykinin NK1R regulation tested by application of the receptor agonists [[Pro9]substance P, neurokinin A, neuropeptide K, and substance P(6–11)] and antagonists (SSR240600, GR205171, GR82334, and RP67580) indicated that the subtype of tachykinin NK1R implicated are the new NK1-sensitive receptor binding site. Therefore, in the limbic/PF territory of the dorsal striatum, endogenous tachykinin facilitates acetylcholine release via a tachykinin NK1R subtype. In the afternoon, the tachykinin/NK1R and the enkephalin/MOR transmissions interact to control cholinergic transmission.  相似文献   

11.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

12.
Mothers who smoke cigarettes during pregnancy give birth to babies with lower birth weights than do nonsmoking mothers. One hypothesis to explain this finding is that nicotine depresses the activity of the placental cholinergic system, which has been linked to the placental transport of amino acids and other substances. The levels and activities of several components of the term placental cholinergic system were determined in smokers and nonsmokers to investigate whether this system is involved in the effect of smoking. There were no statistically significant differences in the levels, synthesis or release of acetylcholine in the tissues from smoking and nonsmoking mothers, nor in the activities of the choline uptake system or the enzymes choline acetyltransferase, cholinesterase or sodium/potassium adenosine triphosphatase. The results do not support the hypothesis that the lower birth weights of babies born to smoking mothers is mediated by an effect of nicotine or other tobacco components on the placental cholinergic system.  相似文献   

13.
Sun HL  Zheng JW  Wang K  Liu RK  Liang JH 《Life sciences》2003,72(11):1221-1230
Tramadol, an atypical opioid analgesic, stimulates both opiatergic and serotonergic systems. Here we have investigated the effect of tramadol in mice on 5-hydroxyptrytophan (5-HTP)-induced head twitch response (HTR), which is an animal model for the activation of the CNS 5-HT(2A) receptors in mice. Tramadol attenuated 5-HTP-induced HTR in a dose-dependent manner as morphine. Furthermore, the nonselective opioid receptor antagonists, naloxone and diprenorphine (M5050), reversed the effect of tramadol on 5-HTP-induced HTR dose-dependently. Interestingly, in contrast to the selective delta opioid receptor antagonist NTI, beta-FNA, a selective mu receptor antagonist, and nor-BNI, a selective kappa opioid receptor antagonist, antagonized the attenuation of 5-HTP-induced HTR by tramadol. In conclusion, administration of tramadol systemically inhibits 5-HTP-induced HTR in mice by activating opiatergic system in the CNS. Our findings show that mu and kappa opioid receptors, but not delta opioid receptor, play an important role in the regulation of serotonergic function in the CNS.  相似文献   

14.
Kim KW  Son Y  Shin BS  Cho KP 《Life sciences》2001,68(11):1305-1315
Naltriben (NTB) has been used to differentiate the subtypes of delta opioid receptors, delta1 and delta2. However, there is considerable evidence suggesting that NTB may act on other types of opioid receptors too. We examined the effects of NTB on the specific binding of radiolabeled ligands for opioid mu and kappa2 receptors, and the effects on the release of [3H]norepinephrine ([3H]NE) in rat cerebral cortex slices. NTB displaced the specific binding of [3H]DAMGO with Ki value of 19.79 +/- 1.12 nM in rat cortex membranes. Specific binding of [3H]diprenorphine ([3H]DIP) was inhibited by NTB with Ki value of 82.75 +/- 6.32 nM in the presence of DAMGO and DPDPE. High K+ (15 mM)-stimulated release of [3H]NE was attenuated by DAMGO in rat cerebral cortex slices. NTB (30 nM) shifted the dose-response curve of DAMGO to the right and attenuated the maximal effect. In the meantime, NTB inhibited high K+-stimulated [3H]NE release at concentrations above 100 nM. The inhibitory effect of NTB was not attenuated by CTAP (10 nM) and naloxone (3 nM) but by higher concentration of naloxone (30 nM), nor-BNI (300 nM) and bremazocine (3 nM). These results indicate that NTB, depending on the dosage, could acts not only as an antagonist at delta but also as a noncompetitive antagonist for mu receptors, and as an agonist for kappa2 receptors in rat cerebral cortex.  相似文献   

15.
The direct effect of acetylcholine on the activation of the corpora allata (CA) was investigated in the adult male loreyi leafworm, Mythimna loreyi. Acetylcholine, in the presence of the choline esterase inhibitor physostigmine (50 microM), elicited a stimulatory effect on juvenile hormone acids (JHAs) release from the CA. Maximum effect was obtained at concentrations of 10 and 50 microM. Repeated administration of 10 microM acetylcholine on the same CA did not elicit similar stimulatory effect. Since JHA release can be significantly activated by carbachol and not by nicotine, this cholinergic effect is likely to belong to the muscarinic type. The effect of acetylcholine was significantly antagonized by gallamine triethiodide (M(2) antagonist) and 4-DAMP (M(3) antagonist), pirenzepine (M(1) antagonist), and tropicamide (M(4) antagonist) were ineffective. It is concluded that in the adult male M. loreyi, the cholinergic regulation of CA is most likely via M(2) and M(3) muscarinic receptors.  相似文献   

16.
Serotonergic Regulation of Acetylcholine Release in Rat Frontal Cortex   总被引:2,自引:0,他引:2  
Abstract: The extent to which serotonin regulates the activity of cortically projecting cholinergic neurons was studied using in vivo microdialysis to monitor interstitial concentrations of acetylcholine in the frontal cortex of freely moving rats. Systemic administration of the serotonin release-inducing agent fenfluramine (3 or 10 mg/kg, i.p.) increased acetylcholine release by 110–130%. The fenfluramine-induced increase in acetylcholine release was significantly attenuated by pretreatment with the selective serotonin uptake inhibitor fluoxetine (10 mg/kg, i.p.). Pretreatment with the selective dopamine D1 receptor antagonist SCH-23390 (0.3 mg/kg, s.c.) failed to prevent the fenfluramine-induced increase in acetylcholine release. In contrast, the serotonin 5-HT2A receptor antagonist ketanserin (5 mg/kg, i.p.) blocked fenfluramine-induced increases in acetylcholine release. In contrast to previous studies that have concluded that serotonin has inhibitory actions on cortical acetylcholine release, the present results indicate that fenfluramine increases cortical acetylcholine release in vivo by its ability to enhance serotonin transmission and that serotonin produces these effects at least in part via actions at serotonin 5-HT2A receptors.  相似文献   

17.
One immunological component of asthma is believed to be the interaction of eosinophils with parasympathetic cholinergic nerves and a consequent inhibition of acetylcholine muscarinic M2 receptor activity, leading to enhanced acetylcholine release and bronchoconstriction. Here we have used an in vitro model of cholinergic nerve function, the human IMR32 cell line, to study this interaction. IMR32 cells, differentiated in culture for 7 days, expressed M2 receptors. Cells were radiolabeled with [3H]choline and electrically stimulated. The stimulation-induced release of acetylcholine was prevented by the removal of Ca2+. The muscarinic M1/M2 receptor agonist arecaidine reduced the release of acetylcholine after stimulation (to 82 +/- 2% of control at 10(-7) M), and the M2 receptor antagonist AF-DX 116 increased it (to 175 +/- 23% of control at 10(-5) M), indicating the presence of a functional M2 receptor that modulated acetylcholine release. When human eosinophils were added to IMR32 cells, they enhanced acetylcholine release by 36 +/- 10%. This effect was prevented by inhibitors of adhesion of the eosinophils to the IMR32 cells. Pretreatment of IMR32 cells with 10 mM carbachol, to desensitize acetylcholine receptors, prevented the potentiation of acetylcholine release by eosinophils or AF-DX 116. Acetylcholine release was similarly potentiated (by up to 45 +/- 7%) by degranulation products from eosinophils that had been treated with N-formyl-methionyl-leucyl-phenylalanine or that had been in contact with IMR32 cells. Contact between eosinophils and IMR32 cells led to an initial increase in expression of M2 receptors, whereas prolonged exposure reduced M2 receptor expression.  相似文献   

18.
Previous investigations have shown that the activation of delta-opioid receptors depresses the release of acetylcholine (ACh) in the rat caudate putamen. This finding raised the possibility that the release of ACh is similarly modulated in the globus pallidus, a region containing a distinct population of cholinergic neurons and enriched in enkephalinergic nerve terminals. In the present study the pallidal release of ACh was characterized and the effects of delta-opioid receptor activation on this release were examined. The results show that this release is stimulated by high K+ in a concentration- and Ca(2+)-dependent manner. D-Pen2,L-Pen5-enkephalin (0.1-10 microM), a selective delta-opioid receptor agonist, produced a dose-related inhibition of the 25 mM K(+)-evoked tritium release. The maximal inhibitory effect, representing a 34% decrease in the K(+)-induced tritium release, was observed at a concentration of 1 microM. This opioid effect was attenuated by the selective delta-opioid receptor antagonist, ICI 174864 (1 microM). These findings support the role of a delta-opioid receptor in the modulation of ACh release in the rat globus pallidus.  相似文献   

19.
Incubation of rat striatal tissue in the presence of acetylcholine, carbachol, oxotremorine, or nicotine results in a significant decrease in the sodium-dependent high-affinity glutamate uptake (HAGU). The cholinergic inhibitory effect on glutamate transport is no more detectable in the presence of atropine, a cholinergic receptor antagonist. These data support the hypothesis that glutamatergic nerve ending activity in the striatum is modulated by cholinergic neurons. The effects would involve both muscarinic and nicotinic presynaptic receptors located on the corticostriatal glutamatergic terminals.  相似文献   

20.
Lateral ventricular injections of the 'nonspecific' opioid antagonist naloxone (100 micrograms) and the kappa-selective opioid antagonist nor-binaltorphimine (50 micrograms) elevated the electrical brain stimulation frequency threshold for eliciting feeding behavior. Mesopontine aqueductal injections of nor-binaltorphimine, on the other hand, lowered the feeding threshold while naloxone still elevated threshold. These findings suggest the existence of forebrain kappa receptors at which endogenous opioid activity results in a facilitation of feeding while kappa receptors in the brainstem seem to mediate an inhibitory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号