首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The precipitation patterns of the following ultracytochemical methods in rat muscle cells were compared and examined critically: the potassium pyroantimonate method for calcium demonstration; the calcium phosphate technique for the Ca2+ — ATPase reaction; the formazan reaction for the demonstration of creatine kinase activity (all performed on heart muscle); and the lead phosphate technique for the Mg2+ — ATPase reaction in skeletal muscle. Using X-ray microanalysis, it was found that the antimonate precipitate contains only calcium as the precipitated ion in the vast majority of cases. Most probably it consists of pure calcium pyroantimonate. However, in myocytes showing the well-established precipitation pattern, the concentration of calcium was estimated to be about two orders of magnitude higher than the native concentration of total intracellular calcium. It is concluded that calcium ions diffuse freely from the extracellular space and from adjacent cells into cells containing antimonate and are precipitated mostly at sites where heterogeneous nucleation is facilitated by intracellular catalysts (biopolymers).As shown by the similar precipitation patterns for the four reactions compared, these catalysts are not specific to any of these reactions and are most probably neither calcium-binding sites nor sites of any one of the enzymes examined in the native cell.  相似文献   

2.
Summary Correlated physiological and electron-microscopic studies were made on the source of calcium activating the contractile system (activator calcium) in dog coronary artery smooth muscle fibers. The magnitude of contracture tension induced by 100 mM K+ was dependent on external Ca2+ concentration and reduced or eliminated by factors known to reduce the Ca2+ spike or ca2+ influx. Little or no mechanical response was elicited by treatments known to cause release of intracellularly stored calcium. These results indicated that the contractile system is mainly activated by the inward movement of extracellular calcium. In accordance with the physiological experiments, electron-opaque pyroantimonate precipitate containing calcium was found in the lumina of caveolae, but not in any intracellular structures close to the plasma membrane, when the relaxed fibers were fixed in a 1% osmium tetroxide solution containing 2% potassium pyroantimonate. If the contracted fibers were fixed in the same solution, the pyroantimonate precipitate was diffusely distributed in the myoplasm in the form of numerous particles, while the precipitate in the caveolar lumina was scarcely seen. These findings are discussed in connection with the regulation of intracellular Ca2+ concentration in dog coronary artery smooth muscle.  相似文献   

3.
The hemolymph-derived achatininH (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC50 values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatininH ranged from 6 to 10 μg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 μg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatininH treatment. The specificity and purity of the achatininH was confirmed by the Western blot assay. AchatininH binding to MCF7 cells was detected by anti-achatininH, and visualization of the achatininH binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatininH binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatininH treatment. The cells were arrested in G2/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis. An erratum to this article can be found at  相似文献   

4.
Two complexes of calcium ions containing monodeprotonated caffeate ligands were synthesized and physicochemically (IR, FIR, NMR, thermal analysis) and theoretically (DFT and pharmacokinetical parameters) characterized. [Ca(C9H7O4)2] · 2H2O 1a and [Ca(C9H7O4)2] · 2H2O KNO3 1b are compounds with unusual four coordinate calcium ion containing the ligand coordinated to the metal ion through two carboxylic groups arranged with tetrahedrally-like mode (CaO4). Two water molecules are outside the first coordination sphere bound non-equivalently to the ligand through a net of hydrogen bonding. The compounds were found to be cytotoxically inactive. Finally, in silico parameters predict the potential application of the compound as a supplement and/or drug.  相似文献   

5.
Calcium was localized by a pyroantimonate technique in hamster spermatozoa during the acrosome reaction and pyroantimonate precipitates were observed in the anterior region of the acrosome. The calcium was also localized in the postacrosomal lamina of spermatozoa undergoing the acrosome reaction. Spermatozoa, incubated in capacitating medium containing verapamil, showed denser precipitates with an increase in concentration of this drug. Ionophore A23187 enhanced binding of calcium to the acrosomal region. The sodium channel inhibitor amiloride inhibited the acrosome reaction and the pyroantimonate precipitates were absent in these spermatozoa, whereas ionophore monensin enhanced the acrosome reaction. This suggests that the Na+/Ca++ antiporter may be responsible for intracellular Ca++ regulation during the acrosome reaction in hamster spermatozoa.  相似文献   

6.
We have studied the effect of exogenous administration of hydrogen peroxide (H2O2) on phagocytic activity of human neutrophils. The treatment of cells with increasing concentrations of H2O2 evoke a significant elevation of phagocytic function assayed as phagocytic index, percentage and efficiency; and was similar to that induced by the calcium mobilising agonist formyl-methionyl-leucyl-phenylalanine (fMLP). This stimulatory effect was reduced by pre-treatment of neutrophils with catalase and abolished in neutrophils loaded with the intracellular calcium quelator dimethyl BAPTA. In the absence of extracellular calcium, treatment of cells with H2O2 resulted in a increase in [Ca2+] i , indicating the release of calcium from intracellular stores. H2O2 abolished the typical calcium release stimulated by the physiological agonist fMLP, while depletion of agonist-sensitive calcium pools by fMLP was able to prevent H2O2-induced calcium release. We conclude that H2O2 induces calcium release from agonist-sensitive stores and consequently increase the phagocytosis process.  相似文献   

7.
Calcium binding to intestinal membranes   总被引:15,自引:10,他引:5       下载免费PDF全文
Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization.  相似文献   

8.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

9.
Plasmodia of the acellular slime mold, Physarum polycephalum, were treated with an osmium tetroxide fixative containing potassium pyroantimonate to precipitate calcium and thereby localize calcium binding sites and sites of increased calcium concentration. Dense calcium pyroantimonate precipitates were detected within the nucleoli. The distribution of these precipitates during interphase and mitosis coincides with the distribution of the unique minichromosomes in Physarum, i.e., the numerous short pieces of extrachromosomal nucleolar chromatin containing segments of amplified DNA coding for ribosomal RNA. Calcium pyroantimonate precipitates were present as frequent dense granules in the mitochondrial matrix and as fine precipitates in the mitochondrial nucleoid. Large calcium-containing precipitates were seen within cytoplasmic vacuoles, confirming reports by others. In addition, we have identified calcium binding sites along the cytoplasmic surface of the plasma membrane. The distribution of calcium within the plasmodium is discussed in relation to the assembly of the mitotic spindle and the regulation of cell motility.  相似文献   

10.
Hydrogen peroxide (H2O2) has important messenger and effector functions in the plant and animal kingdom. Phagocytes produce H2O2 to kill pathogens, and epithelial cells of large airways have also been reported to produce H2O2 for signaling and host defense purposes. In this report, we show for the first time that urothelial cells produce H2O2 in response to a calcium signal. Using a gene-deficient mouse model we also demonstrate that H2O2 is produced by the NADPH oxidase Duox1, which is expressed in the mouse urothelium. In contrast, we found no evidence for the expression of lactoperoxidase, an enzyme that has been shown to cooperate with Duox enzymes. We also found that specific activation of TRPV4 calcium channels elicits a calcium signal and stimulates H2O2 production in urothelial cells. Furthermore, we detected altered pressure responses in the urinary bladders of Duox1 knockout animals. Our results raise the possibility that mechanosensing in epithelial cells involves calcium-dependent H2O2 production similar to that observed in plants.  相似文献   

11.
Lesion delimitation and resistance of old bean (Phaselous vulgaris L., cv. Red Kidney) plants to Rhizoctonia solani Kühn have been suggested to result from increased calcium pectate formation in walls. Ultrastructural histochemistry was used to determine the site of calcium in tissues adjacent to lesions and in older bean hypocotyls. Hypocotyl lesion tissue and uninoculated control tissue were treated with ammonium oxalate or potassium pyroantimonate during fixation. Treatment with potassium pyroantimonate, but not with oxalate, resulted in granular deposits in cell walls of healthy and lesion tissue. Granules also occurred on the plasma membrane of cells adjacent to lesions and in organelles of damaged cells, but wall granule density was not increased. Cell walls from healthy 24-day-old plants had a greater granule density than those for 8-day-old plants. Wall granules were removed from thin sections with ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Energy dispersive analysis of x-rays also suggested that potassium pyroantimonate localized calcium. Chemical analyses showed that some calcium was retained in tissues after fixation. The results suggest that there are different mechanisms for lesion delimitation and age-induced resistance.  相似文献   

12.
The oxidation of sn-glycerol 3-phosphate by mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a major pathway for transfer of cytosolic reducing equivalents to the mitochondrial electron transport chain. It is known to generate H2O2 at a range of rates and from multiple sites within the chain. The rates and sites depend upon tissue source, concentrations of glycerol 3-phosphate and calcium, and the presence of different electron transport chain inhibitors. We report a detailed examination of H2O2 production during glycerol 3-phosphate oxidation by skeletal muscle, brown fat, brain, and heart mitochondria with an emphasis on conditions under which mGPDH itself is the source of superoxide and H2O2. Importantly, we demonstrate that a substantial portion of H2O2 production commonly attributed to mGPDH originates instead from electron flow through the ubiquinone pool into complex II. When complex II is inhibited and mGPDH is the sole superoxide producer, the rate of superoxide production depends on the concentrations of glycerol 3-phosphate and calcium and correlates positively with the predicted reduction state of the ubiquinone pool. mGPDH-specific superoxide production plateaus at a rate comparable with the other major sites of superoxide production in mitochondria, the superoxide-producing center shows no sign of being overreducible, and the maximum superoxide production rate correlates with mGPDH activity in four different tissues. mGPDH produces superoxide approximately equally toward each side of the mitochondrial inner membrane, suggesting that the Q-binding pocket of mGPDH is the major site of superoxide generation. These results clarify the maximum rate and mechanism of superoxide production by mGPDH.  相似文献   

13.
It was shown that dihydroxyacetone phosphate may exist in both monomeric DHAP (C3H7O6P) and dimeric DHAP-dimer (C6H14O12P2) form. Monomeric DHAP was obtained in the form of four crystalline salts: CaCl(DHAP)·2.9H2O (7a), Ca2Cl3(DHAP)·5H2O (7b), CaCl(DHAP)·2H2O (7c), and CaBr(DHAP)·5H2O (7d) by crystallization from aqueous solutions containing DHAP acid and CaCl2 or CaBr2, or by direct crystallization from a solution containing DHAP precursor and CaCl2. At least one of the salts is stable and may be stored in the crystalline state at room temperature for several months. The dimeric form was obtained by slow saturation of free DHAP syrup with ammonia at −18 °C and isolated in the form of its hydrated diammonium salt (NH4)2(DHAP-dimer)·4H2O (8). The synthesis of the compounds, their crystallization, and crystal structures determined by X-ray crystallography are described. In all 7a-d monomeric DHAP exists in the monoanionic form in an extended (in-plane) cisoid conformation, with both hydroxyl and ester oxygen atoms being synperiplanar to the carbonyl O atom. The crucial structural feature is the coordination manner, in which the terminal phosphate oxygen atoms act as chelating as well as bridging atoms for the calcium cations. Additionally, the DHAP monoanions chelate another Ca2+ by the α-hydroxycarbonyl moiety, in a manner observed previously in dihydroxyacetone (DHA) calcium chloride complexes. In dimeric 8 the anion is a trans isomer with the dioxane ring in a chair conformation with the hydroxyl groups in axial positions and the phosphomethyl group in an equatorial position.  相似文献   

14.
The correlation between an increased production of reactive oxygen species (ROS) and an enhanced calcium entry in primed neutrophils stimulated with fMLP suggests that endogenous ROS could serve as an agonist to reinforce calcium signaling by positive feedback. This work shows that exogenous H2O2 produced a rapid influx of Mn2+ and an increase of intracellular calcium. The H2O2 was insufficient to produce significant changes in the absence of extracellular calcium but addition of Ca2+ to H2O2-treated cells suspended in a free Ca2+/EGTA buffer resulted in a great increase in [Ca2+]i reflecting influx of Ca2+ across the cell membrane. The increase of intracellular calcium was inhibited by Ni2+, La3+, and hyperosmotic solutions of mannitol and other osmolytes. This raises the possibility that the secretion of H2O2 by activated neutrophils could act as an autocrine regulator of neutrophil function through the activation of calcium entry.  相似文献   

15.
Influence of Sodium Hexametaphosphate on Selected Bacteria   总被引:2,自引:1,他引:1       下载免费PDF全文
Sodium hexametaphosphate (HEX), the solvent of calcium alginate wool used in swabbing inanimate surfaces was studied relative to its effect on various bacterial populations, both pure cultures and wild. It was found that bacteria in wild populations were greatly inhibited, and that a percentage reduction of count was directly related to concentration of HEX. Most gram-positive bacteria were prevented from growing on a medium containing 0.1% HEX. This, or a higher concentration, occurred in the final medium when the method recommended in Standard Methods for the Examination of Dairy Products was followed. Growth of Sarcina lutea occurred on media with higher concentrations than that of inhibition (0.05%), if MgSO4·7H2O was incorporated in the medium. Gram-negative bacteria were capable of growing in higher concentrations, even up to 10% HEX. A large percentage of the cells of some strains (represented by Pseudomonas fluorescens) were lysed on contact with HEX. Lysis could be prevented by the addition of NaCl or MgSO4·7H2O. The evidence presented suggests that HEX, a phosphate-glass water-softening sequestrant, interferes with divalent cation metabolism, notably magnesium ion, and possibly others, producing cell division inhibition and loss of cell-wall integrity. The mechanism of action was not elucidated.  相似文献   

16.
A method of immobilization of whole cells ofStreptomyces kanamyceticus containing glucose isomerase was devised, based on techniques of heat fixation in the presence of minerals and, entrapment in calcium alginate gels. The optimum activity of the enzyme was obtained when the cells were heat-fixed at 60°C for 10 min in the presence of 50 mmol/L MgSO4·7H2O and 5 mmol/L CoCl2·6H2O and then cast into calcium alginate beads using 2% sodium alginate.  相似文献   

17.
Human umbilical vein endothelial cells were exposed in culture to hydrogen peroxide (H2O2), keeping them close to physiological conditions (high cell density, high serum content, H2O2 concentration not over 500 µM). Cell viability was assessed by flow cytometry using simultaneous staining with the fluorescent dye PO-PRO-1 to detect early apoptotic cells and DRAQ7 to detect late apoptotic and necrotic cells. The data obtained suggest that the primary mechanism of the cytotoxic response to H2O2 is apoptosis. The critical concentration of H2O2 causing death in a dense monolayer is 250 µM. Lower H2O2 concentrations (up to 200 µM) cause death of individual cells. The population of endothelial cell retains viability and response to calcium activating agonists does not change compared to control cells.  相似文献   

18.
The present study was aimed to find out whether an increase of cytosolic free calcium level induces egg apoptosis through mitochondria-caspase mediated pathway. To increase cytosolic free calcium level and morphological apoptotic changes, ovulated eggs were cultured in Ca2+/Mg2+ free media-199 with or without various concentrations of calcium ionophore (0.5, 1, 2, 3, 4 μM) for 3 h in vitro. The morphological apoptotic changes, cytosolic free calcium level, hydrogen peroxide (H2O2) concentration, catalase activity, cytochrome c concentration, caspase-9 and caspase-3 activities and DNA fragmentation were analyzed. Calcium ionophore induced morphological apoptotic features in a concentration-dependent manner followed by degeneration at higher concentrations (3 and 4 μM). Calcium ionophore increased cytosolic free calcium level, induced generation of hydrogen peroxide (H2O2) and inhibited catalase activity in treated eggs. The increased H2O2 concentration was associated with increased cytochrome c concentration, caspase-9 and caspase-3 activities that resulted in the induction of morphological features characteristic of egg apoptosis. The increased caspase-3 activity finally induced DNA fragmentation as evidenced by TUNEL positive staining in calcium ionophore-treated eggs. These findings suggest that high cytosolic free calcium level induces generation of H2O2 that leads to egg apoptosis through mitochondria-caspase mediated pathway.  相似文献   

19.
Binding of ethidium to bacteriophage T7 and T7 deletion mutants   总被引:1,自引:0,他引:1  
Equilibrium binding of ethidium, quantitated by fluorescence enhancement, to DNA packaged in bacteriophage T7 and T7 deletion mutants has been compared with the binding of this dye to DNA released from its capsid (free DNA). During achievement of apparent equilibrium binding, no change in bacteriophage T7 structure occurred, by the criterion of agarose gel electrophoresis. However, excessive incubation with ethidium bromide caused detectable changes in bacteriophage structure, a possible explanation of disagreements in similar studies previously performed with T-even bacteriophages. Scatchard plots for packaged DNA had a curvature greater than the previously demonstrated [Bresloff, J. L. & Crothers, D. M. (1981) Biochemistry 20 , 3547–3553] curvature for free DNA. By treating plots for packaged DNA as though they were biphasic, it was found that binding to most sites occurred with an apparent association constant (Kap) 3.3–4.3 times lower than the Kap of free DNA. The number of these sites increased significantly as the density of packaged DNA was decreased by use of the deletion mutants. Values of ΔH° for these sites were negative and equal to the ΔH° for free DNA; values of ΔS° were positive and about half the ΔS° for free DNA. A second class of sites, roughly 1.2% of the total, had a significantly higher Kap and more negative ΔH° than those of the majority of sites.  相似文献   

20.
Spores of the microsporidian parasitic protozoan Encephalitozoon hellem were purified and incubated at 37° C in a solution with an electrolyte composition similar to that of mammalian extracellular fluid, and in solution in which the calcium had been replaced with 0.2 mM EGTA. Polar filament extrusion (germination) was monitored by both scanning electron microscopy and light microscopy. Germination was pH-dependent, with optima at pH 7.4 and 9.5, and was significantly greater in the presence of medium calcium. Hydrogen peroxide caused a concentration-dependent increase in germination that was also reduced in a calcium-free medium. Four agents were found to inhibit spontaneous and H2O2-stimulated polar filament extrusion: the microfilament disrupter, cytochalasin D; the microtubule disrupter, demecolcine; the calcium channel blocker, nifedipine; and the antifungal agent, itraconazole. These results are consistent with the existence of a calcium-channel-mediated step, and requirements for an F-actin- and for a tubulin-containing element in the germination process of the spore of this parasite. Nifedipine, cytochalasin D and itraconazole all have different sites of action and were therefore able to potentiate one another when used in paired combination to inhibit germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号