首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—[3H]Leucine, [3H]glucosamine and [3H]fucose were incorporated in vitro into proteins in frog sciatic ganglia and subsequently transported at a rapid rate along the sciatic nerve towards a ligature, in front of which they accumulated. The synthesis of transported fucose-labelled proteins is closely linked to protein synthesis but is not dependent on RNA synthesis, as judged by effects after incubation for 17 h in the presence of cycloheximide and actinomycin D. Labelled ganglionic as well as transported material were solubilized in sodium dodecyl sulphate and characterized by polyacrylamide gel electrophoresis. The bulk of ganglionic proteins, labelled with any of the precursors used, had molecular weights exceeding 40,000. The radioactivity patterns of leucine- and glucosamine-labelled ganglionic proteins showed similarities with dominant peaks corresponding to molecular weights of about 75,000 and 50,000. The last peak was almost lacking in fucose-labelled ganglionic components. Leucine- and glucosamine labelled-transported proteins exhibited characteristic and similar electrophoretic distributions in contrast to the pattern of fucose-labelled nerve proteins, which was more polydisperse. The most conspicious nerve proteins corresponded to molecular weights of about 75,000 and 18,000. There was a remarkable agreement in the profile of leucine-labelled transported nerve proteins and fucose-labelled ganglionic proteins. In the light of these observations the possibility that glycoproteins constitute a large part of rapidly transported proteins will be discussed.  相似文献   

2.
An in vitro system for studying fast axonal transport in mammalian nerves has been developed. The viability of in vitro nerve preparations was established on the basis of three criteria: electron microscopy, electrical properties, and the activities of two marker enzymes, 5'-nucleotidase and total ATPase. The specific activity of transported proteins was greater using the in vitro procedure, and the level of locally incorporated radioactivity lower, when compared to in vivo transport experiments. Separation of solubilized transported proteins on polyacrylamide gels in the presence of sodium dodecyl sulfate showed that a large number of polypeptides are transported. Using a double label procedure which employed L-[3H]methionine and L-[35S]methionine, proteins transported in vitro and in vivo were compared. No differences in the electrophoretic distribution of transported proteins from the two systems was seen. The major component of transported proteins electrophoresed with an apparent molecular weight of 105,000 ± 24,000. Using the in vitro system, transported proteins were compared to those labelled locally in either Schwann cells or cells of the dorsal root ganglion. Large differences in the labelling patterns were observed in both comparisons. We conclude that in vitro procedures provide a valid means of studying rapid axoplasmic transport. The proteins carried by rapid axoplasmic transport differ from those synthesized in either the Schwann cells of the sciatic nerve or the cells of the dorsal root ganglion.  相似文献   

3.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

4.
—An in vitro system from the frog has been used to study fast axonal transport of glycoproteins. The migration of [3H]fucose-, [3H]glucosamine- and [35S]sulphate-labelled material was followed from the dorsal ganglia, along the sciatic nerve towards the gastrocnemius muscle. The distribution in different subcellular fractions, effect of cycloheximide and transport kinetics did not differ very much between fucose- and glucosamine-incorporation into the nerve. Cycloheximide blocked the synthesis of TCA-insoluble radioactivity, which was transported at a rate of 60–90 mm per day at 18°C, more effectively than the synthesis of stationary proteins in the ganglia. About 10 per cent of the TCA-insoluble and transported radioactivity was extracted by chloroform-methanol (2:1, v/v) and might be glycolipids and the rest glycoproteins. Results suggest that TCA-soluble activity, which was recovered in the nerve, originated in part from labelled macromolecules consumed along the axons. The rapidly transported TCA-insoluble radioactivity was 85 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction. [35S]Sulphate-labelled TCA-insoluble material was resistant towards chloroform-methanol (2:1, v/v) extraction and rapidly transported from the ganglia into the nerve. The synthesis was inhibited by cycloheximide. The material, probably proteoglycans, represented a quantitatively minor part of transported glycoproteins.  相似文献   

5.
Abstract— Utilizing an in vitro labeling procedure, the proteins carried by rapid axoplasmic transport in normal and regenerating sensory fibers of the rat sciatic nerve were compared. No statistically significant differences were found when the total amount of transported protein was compared in control and sectioned nerves at times from 2 to 76 days following axotomy. Fractionation of labeled proteins on polyacrylamide slab gels enabled the identification of some 25 individual transported proteins. By this criterion, no differences were detectable in the composition of proteins synthesized in the dorsal root ganglia from which sectioned vs control sciatic nerves project. When the electrophoretic distributions of transported proteins from control and sectioned nerves were compared, significant' differences were observed. The appearance and disappearance of two proteins were temporally related to chromatolytic changes in the nerve cell body. In addition, the composition of transported proteins in undamaged control nerves contralateral to the sectioned nerves exhibited changes which were not observed in either normal control nerves or sectioned nerves. Changes in the composition of transported proteins as a function of time following the onset of chromatolysis may be involved in controlling nerve regeneration in sensory nerve fibers.  相似文献   

6.
Abstract— [35S]cysteine, [3H]methionine, or [3H]fucose were injected into the supraoptic nuclei (SON) of rats, and the labelled proteins that were transported to and accumulated in the posterior pituitary 24h post-injection were analyzed electrophoretically. The transported, labelled proteins which were soluble in 0.1 m -HCl were primarily of low molecular weight (about 12,000 on SDS gels). However, the selectivity of labelling of these proteins by the three different labelled precursors could be revealed by isoelectric focusing. The 0.1 m -HCl insoluble labelled proteins, presumably reflecting membrane proteins transported from the SON to the pituitary, were more diverse and generally of higher molecular weight (> 43,000 on SDS gels).  相似文献   

7.
—The presence of rapidly transported axonal proteins in purified preparations of myelin has been investigated in the goldfish visual system. Fish were injected intraocularly with 3H proline and contralateral optic tecta were pooled 8–12 h later for purification of myelin. Three purification procedures were employed using continuous and discontinuous gradients of sucrose and continuous gradients of CsCl. All of the myelin preparations were found to have physical, chemical and enzymatic properties attributable to relatively pure preparations of myelin. The goldfish myelin differed from mammalian preparations in having a slightly lower density and in containing an additional major protein of approx. 45,000 mol. wt. All of the myelin preparations retained relatively high levels of axonally transported radioactivity with specific radioactivities which ranged from 70 to 80 per cent of that of the whole tectal homogenate. Acrylamide gel analysis showed the myelin-associated radioactivity to be confined to the higher molecular weight proteins with very little radioactivity associated with basic protein or proteolipid protein. Both the axonally transported radioactivity and the group of higher molecular weight proteins were found to be more concentrated in a myelin subfraction of relatively high density than in a subfraction of low density. The possible significance of the association of axonally transported proteins with myelin is discussed.  相似文献   

8.
TRANSPORT AND TURNOVER OF NEUROHYPOPHYSIAL PROTEINS OF THE RAT   总被引:2,自引:0,他引:2  
Axonal transport and turnover rate of proteins in the supraoptico-neurohypo-physial tract were studied after injection of 35S cysteine into the region of the supraoptic nucleus. The proximo-distal migration of labelled proteins from the nerve cell bodies to the axon terminals in the neurohypophysis was followed by measuring the radioactivity of neurohypophysial proteins at various time intervals (4 h to 30 days) after isotope injection. A rapidly transported phase of proteins with a minimal transport rate of approximately 60 mm/day was demonstrated. An accumulation of protein-bound radioactivity was also observed in the neural lobe at 9 days after isotope injection, representing slowly transported proteins (0-5 mm/day). In addition, an intermediate phase of axonal transport (1-5 mm/day) was found. Fractionation of neurohypophysial proteins by polyacrylamide gel disc electrophoresis revealed that a predominating portion of the radioactivity was recovered in a single protein component (fraction A) at 4 h as well as at 30 days after isotope injection. This protein component was shown to be a constituent both of the rapid and the slow phase of axonal transport. With time an increasing amount of radioactivity was found in another protein component (fraction B), which reached a maximum at 14 days after injection and then remained fairly constant up to 30 days. When the turnover rates of neurohypophysial proteins were estimated, a half-life of 1-2 days and 8 days was calculated for the rapidly and slowly transported proteins, respectively.  相似文献   

9.
[3H]Fucose was incorporated into glycoproteins in the rabbit retinal ganglion cells and subsequently transported at a rapid rate along the optic pathway to the nerve terminals of the lateral geniculate body and the superior colliculus. Radioautographic results indicated a preferential labelling of the terminal part of the axon. Cell fractionation showed that the major part of the transported fucose-containing glycoproteins were associated with membranes. Sodium dodecy 1 sulphate electrophoresis of rapidly transported glycoproteins showed that most of the polypeptides had a mol. wt. of more than 40,000.  相似文献   

10.
—The effects of Ca2+-free incubation medium on in vitro axoplasmic transport of proteins were studied in the central and peripheral branches of primary afferent spinal neurons of frog. Following exposure of dorsal root ganglia to [3H]leucine, the amount of radioactive protein transported along the axons during a subsequent 19 h period was decreased by approximately 60 per cent in preparations incubated in Ca2+-free, 1 mm -EGTA medium compared to those in normal medium. In similar Ca2+-free conditions the endogenous calcium levels were decreased to one-fourth the levels found following incubation in normal medium. Neither raising EGTA concentrations to 10 mm nor incubation in Ca2+-free medium prior to the [3H]leucine pulse were found to decrease the amount of transported protein in Ca2+-free medium by more than 70 per cent. The decrement in the amount of transported proteins did not appear to be due to an effect of Ca2+-free medium upon either the uptake of [3H]leucine into ganglion cells or upon the incorporation of radioactive amino acid into protein. The data are interpreted to suggest (i) that‘loading' of proteins onto the transport system is inhibited during Ca2+-free incubation and (ii) that the apparent transport of radioactive proteins during Ca2+-free incubation conditions might reflect proximo-distal movement of either microtubular protein or some other protein components of the transport system. It is proposed that calcium ions might function as reversible bonds between the transport system and‘transported' proteins.  相似文献   

11.
Abstract— The redistribution of rapidly migrating [3H]leucine-labelled proteins and [3H]fucose-labelled glycoproteins was studied in ligated regenerating hypoglossal and vagus nerves of the rabbit. When regenerating and contralateral hypoglossal nerves were ligated 16 h after labelling of the nerve cell bodies, rapidly migrating proteins and glycoproteins accumulated distal to the ligatures indicating a rapid retrograde transport from the peripheral parts of the nerves within 6 h. The retrograde accumulation of both proteins and glycoproteins was greater on the regenerating side than on the contralateral side at both 1 and 5 weeks after a nerve crush. Labelled proteins and glycoproteins also accumulated proximal to the ligatures, indicating a delayed rapid anterograde phase of axonal transport. The accumulation of this phase was also greater on the regenerating side 1 week after a nerve crush for both labelled proteins and glycoproteins. One week after a crush of the cervical vagus nerve, rapidly migrating proteins and glycoproteins redistributed between he crush zone and a proximal ligature applied 16 h after labelling of the nerve cell bodies. A retrograde accumulation occurred distal to the ligature within 6 h, indicating a rapid retrograde transport from the crush zone.  相似文献   

12.
Abstract— —The contribution of axonal transport to the production of myelin proteins and glycoproteins was investigated using the double labelling technique of combined intraocular and intracerebral injections in the same animal. Myelin and an axolemma-enriched fraction were isolated from pooled optic nerves, chiasma and optic tracts. Separation by gel electrophoresis showed that typical myelin proteins and glycoproteins were only significantly labelled by intracerebral injection. Intraocular injection labelled high molecular weight proteins other than the major Wolfgram protein and the major myelin glycoprotein. Fifteen days after intraocular injection the label was concentrated in a high molecular weight protein which migrated slightly more slowly than the major Wolfgram protein. The pattern of proteins and glycoproteins in myelin labelled by intraocular injection was very similar to that obtained in the axolemma-enriched fraction by the same route. These results indicate that neuronal metabolism and axonal transport do not contribute significantly to the synthesis of specific myelin proteins and glycoproteins, but suggest that the components of myelin fractions which are labelled by intraocular injection are contaminants of axolemmal origin. One of these glycoproteins may prove a useful marker of axolemma membranes.  相似文献   

13.
Brain slices were prepared from 17-day old rats, and incubated with [3H]glycine or [3H]-leucine to label proteins. Myelin was isolated from the slices, and the proteins were separated by discontinuous gel electrophoresis in buffers containing sodium dodecyl sulfate. Radioactive basic and Wolfgram proteins appeared in myelin at similar initial rates, and their entry was nearly linear between 15 and 120 min with no detectable lag. Radioactive proteolipid protein appeared in myelin at one-fourth the rate of the basic and Wolfgram proteins between 0 and 30 min, then entered at a rate comparable to the other proteins between 45 and 120 min. When cycloheximide (0.2 mM) or puromycin (1.0 mM) was added, appearance of newly labeled basic and Wolfgram proteins in myelin stopped while proteolipid protein continued to appear in myelin at a normal rate for at least 30 min. Chase experiments with unlabeled glycine had similar effects. These results indicate the existence of a previously synthesized precursor pool of proteolipid protein with a 30-min interval between synthesis of proteolipid protein and its appearance in myelin. Incorporation of [3H]fucose into glycoprotein of the myelin sheath was studied, as was inhibition of incorporation of radioactivity by the use of either cycloheximide, or dilution with unlabeled fucose. The results indicated fucosylation of a sizable pool of presynthesized protein and a delay of 30 min between fucosylation of these polypeptides and their subsequent appearance in myelin as glycoproteins.  相似文献   

14.
Abstract— Radioactive cystathionine, a metabolic precursor of taurine, was injected into the right eye of goldfish. At various times after injection the retina and both optic tecta were extracted with trichloroacetic acid (TCA) and the amount and nature of the radioactivity was determined. Radioactive taurine and inorganic sulfate were present in the TCA-soluble extract of retina and radioactive taurine and a small amount of inorganic sulfate was found in the contralateral optic tectum. That taurine is migrating intraaxonally and is not diffusing in extraaxonal spaces is suggested from experiments in which the migration of taurine was compared with that of [14C]mannitol, used here as a marker of extracellular diffusion. In the time studied (up to 15 h) mannitol did not migrate to the tectum, whereas taurine was detectable in the tectum as early as 8 h after injection. Since intra-axonal diffusion of amino acids and other small molecules in this system has been ruled out, it is likely that taurine is being transported axonally. The axonal transport of taurine was found to be similar to the fast component of protein transport because: (1) their rates of transport are similar, (2) the transport of both is blocked by the protein synthesis inhibitor cycloheximide, (3) vinblastine, which disrupts neurotubules, appears to have similar effects on both protein and taurine transport, and (4) both rapidly transported proteins and taurine remain mostly intra-axonal once they have been transported to the tectum. Taurine and proteins differ in that rapidly transported proteins are primarily paniculate in nature and localized to a large extent in nerve endings, while taurine is primarily in a soluble fraction and is present in nerve endings only in trace amounts. We suggest that taurine may be loosely linked to a newly synthesized protein in the soma and is then transported along with that protein on a similar conveying mechanism in the axoplasm.  相似文献   

15.
Abstract— Anterograde and retrograde flux of axonal transported glycoproteins were examined in streptozotocin diabetic rats with 4 weeks'duration of the metabolic derangement.
[3H]Fucose and [14C]NeuNAc were injected into the fifth lumbar root ganglion and the accumulation of TCA-PTA insoluble activity proximal and distal to a sciatic nerve ligature was measured.
Accumulation of glycoproteins during 2 h collection periods was decreased distal to a ligature in diabetic animals whereas no abnormality of proximal accumulation was observed. These findings demonstrate an abnormality of the retrograde transport of glycoproteins in early experimental diabetes.  相似文献   

16.
Differential transport requirements of HLA and H-2 class I glycoproteins   总被引:9,自引:0,他引:9  
Transport of human and mouse major histocompatibility complex class I glycoproteins has been examined in a transport deficient B-lymphoblastoid cell line × T-lymphoblastoid cell line (B-LCL × T-LCL) hybrid, 174 × CEM. T2 (T2). This cell line expresses no detectable endogenous HLA-B5 and reduced levels of HLA-A2 on its surface although these molecules are synthesized. In order to study this defect further, either HLA-Bw58 or HLA-B7 genomic clones were transfected into T2. Metabolic labeling and immune precipitation demonstrated biosynthesis of the Bw58 or 137 glycoprotein. However, like the endogenous HLA-B5 molecule, neither HLA-Bw58 nor HLA-B7 was expressed at the cell surface. The cloned genes were properly expressed on the surface of C1R, a control B-LCL. To determine if mouse class I alleles had the same transport requirements as the human class I glycoproteins, either mouse H-2D p or H-2K b class I genes were introduced into T2. Surprisingly, the H-2 class I glycoproteins were transported to the cell surface normally. These data suggest a fundamental difference between human and mouse histocompatibility antigens in their requirements for intracellular transport.  相似文献   

17.
Abstract— The time course of incorporation of intraperitoneally injected [3H]lysine and [14C]phenylalanine into neuronal and neuropil proteins has been followed for up to 8 days. At short times after injection (<2 h) the specific activity of the neuronal fraction was higher than that of the neuropil. At longer time intervals, although the total brain specific activity continued to rise, neuronal perikaryal specific activity fell below that of neuropil. Thus the neuronal/neuropil incorporation ratio with [3H]lysine as substrate was 1·5 at 1 h, but by 4 h had fallen to 0·4, a ratio which was maintained for up to 8 days. A similar reversal occurred with phenylalanine as substrate. These changes were interpreted as evidence for the presence of a rapidly-labelling protein fraction in the neurons which is subsequently transported out. Subcellular fractionation showed that over the 4 h period the rapidly labelling fraction was not transported to the synaptosomes. Incubation of prelabelled cortex slices followed by cell fractionation showed that a differential transport of protein of higher than average specific activity from both neurons and neuropil fractions occurred; there is a tendency for preformed highly labelled protein to accumulate during the in vitro incubation in Fraction D, a pellet enriched in red cells, some large neuronal perikarya and cell nuclei. When cell fractions were prepared after in vitro incubation, the distribution of the material down the gradient differed from that when fresh tissue was fractionated, as demonstrated by microscopic examination and the distribution of β-galactosidase, a neuronal marker. Double-label experiments showed that this redistribution could not account for the preferential loss and accumulation of prelabelled protein. It was noted that in vivo incorporation into the rapidly labelling neuronal protein is suppressed under certain changed environmental conditions, such as dark rearing. This is interpreted as lending support to the concept of the state-dependence of neuronal and neuropil protein synthesis and their inter-relations.  相似文献   

18.
Four lectins were used to recognize galactose/N-acetyl-galactosamine (Gal/GalNAc) and sialic acid residues in proteins of Chinese hamster metaphase chromosomes. In situ binding pattern of a fluorescein isothiocyanate-labelled (Gal/GalNAc)-specific lectin Sophora japonica agglutinin (SJA) showed that chromosomal SJA-binding proteins are primarily localized to the helically coiled substructure of chromatids. Numerous SJA-binding proteins were identified in Western blots of chromosomal proteins, their molecular weights ranging from 26 to 200kDa. Another Gal/GalNAc-specific lectin, peanut agglutinin (PNA), with a slightly different sugar binding specificity, did not bind to Chinese hamster metaphase chromosomes, and in Western blots only two chromosomal protein bands were faintly stained. The in situ labelling patterns of two sialic acid-specific lectins, Maackia amurensis (MAA) and Sambucus nigra (SNA) agglutinins, both showed that the helically coiled substructure of chromatids is also enriched in sialylated proteins. In Western blot analysis 11 MAA-binding protein bands with molecular weights ranging from 54 to 215kDa were identified, while SNA only bound to one protein band of 67kDa. MAA and SNA are specific for α (2|ad3)- and α (2|ad6)-linked sialic acid residues, respectively. Thus, it is likely that α (2|ad3)-linked sialic acid residues are more common in chromosomal proteins than α(2|ad6)-linked sialic acid residues. These data suggest that Gal/GalNAc and sialic acid-containing glycoproteins exist in metaphase chromosomes and that these proteins may have a role in the formation of higher order metaphase chromosome structures.  相似文献   

19.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   

20.
黄河  于铭秋 《菌物学报》1988,7(Z1):61-71
对根霉(Rhizopus)属的十个种或变种共二十四株菌的菌体可溶性蛋白和酯酶同工酶进行了电泳的研究得到对这个属分类上更多的依据.在严格控制培养,提取和电泳条件的情况下,同一株菌不同批次所得菌体蛋白电泳图谱有较好的重复性.在相同的条件下,每个种的根霉有各自特征性蛋白图谱,种内不同菌株的蛋白图谱和酯酶酶谱基本相同.特别是形态特征明显、分类地位明确的种,种内各株的图谱也较一致,如R. stolonifer;与R.circinans.在确定新变种R. delemar var. latoapicalis时,电泳图谱与R.delemar var.delema:有明显不同,起到了佐证作用.因此认为,蛋白图谱与酯酶酶谱相辅相成,在根霉种的分类中是一有效的辅助手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号