首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung cancer is currently the most deadly malignancy in industrialized countries and accounts for 18% of all cancer-related deaths worldwide. Over 70% of patients with non-small cell lung cancer (NSCLC) are diagnosed at a late stage, with a 5-year survival below 10%. KRAS and the EGFR are frequently mutated in NSCLC and while targeted therapies for patients with EGFR mutations exist, oncogenic KRAS is thus far not druggable. KRAS activates multiple signalling pathways, including the PI3K/Akt pathway, the Raf-Mek-Erk pathway and the RalGDS/Ral pathway. Lung-specific expression of BrafV600E, the most prevalent BRAF mutation found in human tumors, results in Raf-Mek-Erk pathway activation and in the formation of benign adenomas that undergo widespread senescence in a Cre-activated Braf mouse model (BrafCA). However, oncogenic KRAS expression in mice induces adenocarcinomas, suggesting additional KRAS-activated pathways cooperate with sustained RAF-MEK-ERK signalling to bypass the oncogene-induced senescence proliferation arrest.To determine which KRAS effectors were responsible for tumor progression, we created four effector domain mutants (S35, G37, E38 and C40) in G12V-activated KRAS and expressed these alone or with BrafV600E in mouse lungs… The S35 and E38 mutants bind to Raf proteins but not PI3K or RalGDS; the G37 mutant binds to RalGDS and not Raf or PI3K and the C40 mutant is specific to PI3K. We designed lentiviral vectors to code for Cre recombinase along with KRAS mutants (V12, V12/S35, V12/G37, V12/E38 or V12/C40) or EGFP as a negative control.. These lentiviruses were used to infect BrafCA and wild-type mice. Surprisingly there was a significant decrease in tumor number and penetrance with each KRAS effector domain mutant relative to controls, suggesting that KRAS directly activates effectors with tumor suppressive functions.  相似文献   

2.
Connexins are a family of transmembrane proteins essential for the gap junctions, which mediate cell-to-cell communication. Several connexins are reported to be tumor suppressors, and we have established transgenic (Tg) rats with a connexin 32 (Cx32) dominant negative mutant showing high sensitivity to early-stage diethylnitrosamine (DEN)-induced liver carcinogenesis. In this study, we carried out two independent experiments using Tg rats to further investigate the roles of disrupted Cx32 in late-stage carcinogenesis (carcinoma induction and metastasis) in the liver. In the first experiment, of 50 weeks’ duration, DEN was administered at 6 weeks of age and at 26 weeks to explore the effects of carcinogen treatments at different stages. The number of hepatocellular carcinomas (HCCs) was significantly increased in Tg compared with non-Tg rats. The second experiment focused on the effects of Cx32 disruption on metastasis by HCCs induced by administration of DEN and N-nitrosomorpholine. Only Tg rats had multiple metastases of HCCs in the lung, and the development and growth of HCCs was dramatically accelerated in Tg compared to non-Tg rats. Thus, normal function of Cx32 may be essential for suppression of both early and late stages of hepatocarcinogenesis.  相似文献   

3.
The Drosophila melanogaster HSC3 and HSC4 genes encode Hsc70 proteins homologous to the mammalian endoplasmic reticulum (ER) protein BiP and the cytoplasmic clathrin uncoating ATPase, respectively. These proteins possess ATP binding/hydrolysis activities that mediate their ability to aid in protein folding by coordinating the sequential binding and release of misfolded proteins. To investigate the roles of HSC3 (Hsc3p) and HSC4 (Hsc4p) proteins during development, GAL4-targeted gene expression was used to analyze the effects of producing dominant negatively acting Hsc3p (D231S, K97S) and Hsc4p (D206S, K71S) proteins, containing single amino acid substitutions in their ATP-binding domains, in specific tissues of Drosophila throughout development. We show that the production of each mutant protein results in lethality over a range of developmental stages, depending on the levels of protein produced and which tissues are targeted. We demonstrate that the functions of both Hsc3p and Hsc4p are required for proper tissue establishment and maintenance. Production of mutant Hsc4p, but not Hsc3p, results in induction of the stress-inducible Hsp70 at normal temperatures. Evidence is presented that lethality is caused by tissue-specific defects that result from a global accumulation of misfolded protein caused by lack of functional Hsc70. We show that both mutant Hsc3ps are defective in ATP-induced substrate release, although Hsc3p(D231S) does undergo an ATP-induced conformational change. We believe that the amino acid substitutions in Hsc3p interfere with the structural coupling of ATP binding to substrate release, and this defect is the basis for the mutant proteins' dominant negative effects in vivo.  相似文献   

4.
Separase is a protease that promotes chromosome segregation at anaphase by cleaving cohesin. Several non-proteolytic functions of separase have been identified in other organisms. We created a transgenic C. elegans line that expresses protease-dead separase in embryos to further characterize separase function. We find that expression of protease-dead separase is dominant-negative in C. elegans embryos, not previously reported in other systems. The C. elegans embryo is an ideal system to study developmental processes in a genetically tractable system. However, a major limitation is the lack of an inducible gene expression system for the embryo. We have developed two methods that allow for the propagation of lines carrying dominant-negative transgenes and have applied them to characterize expression of protease-dead separase in embryos. Using these methods, we show that protease-dead separase causes embryo lethality, and that protease-dead separase cannot rescue separase mutants. These data suggest that protease-dead separase interferes with endogenous separase function, possibly by binding substrates and protecting them from cleavage.  相似文献   

5.
Strongly dominant negative mutant actins, identified by An and Mogami (An, H. S., and Mogami, K. (1996) J. Mol. Biol. 260, 492–505), in the indirect flight muscle of Drosophila impaired its flight, even when three copies of the wild-type gene were present. Understanding how these strongly dominant negative mutant actins disrupt the function of wild-type actin would provide useful information about the molecular mechanism by which actin functions in vivo. Here, we expressed and purified six of these strongly dominant negative mutant actins in Dictyostelium and classified them into three groups based on their biochemical phenotypes. The first group, G156D, G156S, and G268D actins, showed impaired polymerization and a tendency to aggregate under conditions favoring polymerization. G63D actin of the second group was also unable to polymerize but, unlike those in the first group, remained soluble under polymerizing conditions. Kinetic analyses using G63D actin or G63D actin·gelsolin complexes suggested that the pointed end surface is defective, which would alter the polymerization kinetics of wild-type actin when mixed and could affect formation of thin filament structures in indirect flight muscle. The third group, R95C and E226K actins, was normal in terms of polymerization, but their motility on heavy meromyosin surfaces in the presence of tropomyosin-troponin indicated altered sensitivity to Ca2+. Cofilaments in which R95C or E226K actins were copolymerized with a 3-fold excess of wild-type actin also showed altered Ca2+ sensitivity in the presence of tropomyosin-troponin.  相似文献   

6.
7.
Expression of the calcium channels CaV2.1 and CaV2.2 is markedly suppressed by co-expression with truncated constructs containing Domain I. This is the basis for the phenomenon of dominant negative suppression observed for many of the episodic ataxia type 2 mutations in CaV2.1 that predict truncated channels. The process of dominant negative suppression has been shown previously to stem from interaction between the full-length and truncated channels and to result in downstream consequences of the unfolded protein response and endoplasmic reticulum-associated protein degradation. We have now identified the specific domain that triggers this effect. For both CaV2.1 and CaV2.2, the minimum construct producing suppression was the cytoplasmic N terminus. Suppression was enhanced by tethering the N terminus to the membrane with a CAAX motif. The 11-amino acid motif (including Arg52 and Arg54) within the N terminus, which we have previously shown to be required for G protein modulation, is also essential for dominant negative suppression. Suppression is prevented by addition of an N-terminal tag (XFP) to the full-length and truncated constructs. We further show that suppression of CaV2.2 currents by the N terminus-CAAX construct is accompanied by a reduction in CaV2.2 protein level, and this is also prevented by mutation of Arg52 and Arg54 to Ala in the truncated construct. Taken together, our evidence indicates that both the extreme N terminus and the Arg52, Arg54 motif are involved in the processes underlying dominant negative suppression.  相似文献   

8.
Ras plays an important role in a variety of cellular functions, including growth, differentiation, and oncogenic transformation. For instance, Ras participates in the activation of Raf, which phosphorylates and activates mitogen-activated protein kinase kinase (MEK), which then phosphorylates and activates extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase. Activation of MAP kinase appears to be essential for propagating a wide variety of extracellular signals from the plasma membrane to the nucleus. N17Ras, a GDP-bound dominant negative mutant, is used widely as an interfering mutant to assess Ras function in vivo. Surprisingly, we observed that expression of N17Ras inhibited the activity and phosphorylation of Elk-1, a physiological substrate of MAP kinases, in response to phorbol myristate acetate. The activity and phosphorylation of the MAP kinase hemagglutinin epitope (HA)-ERK1 were not affected by N17Ras in response to the same stimulus. Additionally, expression of N17Ras, but not L61S186Ras, a GTP-bound interfering mutant, inhibited MEK-induced Elk-1 phosphorylation, suggesting that inhibition of Elk-1 may be unique to GDP-bound Ras mutants. Finally, we observed that V12Ras-induced focus formation in NIH3T3 cells is inhibited by coexpression of GDP-bound Ras mutants, such as N17, A15, and N17N69. Therefore, N17Ras and V12 Ras may be codominant with respect to Elk-1 activation and cellular transformation. These results indicate that N17Ras appears to have at least two distinguishable functions: interference with endogenous Ras activation and inhibition of Elk-1 and transfomation. Furthermore, our data imply the possibility that GDP-bound Ras, like N17Ras, may have a direct role in signal transduction.  相似文献   

9.
C. J. Neumann  S. M. Cohen 《Genetics》1996,142(4):1147-1155
The Drosophila wingless (wg) gene encodes a secreted signaling protein that is required for many separate patterning events in both embryonic and larval development. wg functions in the development of the adult structures have been studied using the conditional mutant wg(ts) and also using regulatory mutations of wg that reduce larval functions. Here we present evidence that Sternopleural (Sp) is another regulatory allele of wg that affects a subset of larval functions. Sp has both a recessive loss-of-function component and a gain-of-function component. The loss-of-function component reflects a reduction of wg activity in the notum and in the antenna. The gain-of-function component apparently leads to ectopic wg activity in the dorsal first and second leg disc and thereby generates the dominant Sp phenotype. Sp and other wg alleles show a complex pattern of complementation. We present evidence that these genetic properties are due to transvection. These results have implications for the genetic definition of a null allele at loci subject to transvection.  相似文献   

10.
Gametophytic self-incompatibility in the Solanaceae is controlled by a multiallelic locus called the S locus. Growth of pollen tubes in the pistil is inhibited when the pollen has one of the two S alleles carried by the pistil. The products of a number of pistil S alleles[mdash]S proteins or S RNases[mdash]have been identified, and their role in controlling the pistil's ability to reject self-pollen has been positively established. In contrast, the existence of pollen S allele products has so far been inferred entirely from genetic evidence. Here, we introduced a modified S3 gene of Petunia inflata encoding an S3 RNase lacking RNase activity into P. inflata plants of the S2S3 genotype to determine whether the production of the mutant protein, designated S3(H93R), would have any effect on the ability of the transgenic plants to reject S2 and S3 pollen. Analysis of the self-incompatibility behavior of 49 primary transgenic plants and the progeny of three plants (H30, H37, and H40) that produced S3(H93R) in addition to producing wild-type levels of endogenous S2 and S3 RNases revealed that S3(H93R) had a dominant negative effect on the function of the S3 RNase in rejecting self-pollen; however, it had no effect on the function of the S2 RNase. One likely explanation of the results is that S3(H93R) competes with the S3 RNase for binding to a common molecule, which is presumably the product of the pollen S3 allele.  相似文献   

11.
The inner membrane-bound protein Ras integrates various extracellular signals that are subsequently communicated from the cytoplasm to the nucleus via the Raf/MEK/MAPK cascade. Here we show that the retinoblastoma protein pRb, previously reported to be a nuclear target of this pathway, can in turn influence the activation state of Ras. Rb-deficient fibroblasts display elevated levels (up to 30-fold) of activated Ras during G(1). Expression of wild-type pRb or a number of pRb mutants defective in E2F regulation reverses this effect. We provide evidence that the mid-G(1) activation of Ras in Rb-deficient cells, which occurs at the level of guanine nucleotide binding, differs from that of epidermal growth factor-induced stimulation of Ras, being dependent on protein synthesis. The aberrant levels of Ras activity associated with loss of pRb may be responsible for the differentiation defects in Rb-deficient cells, because suppression of Ras activity in Rb(-/-) fibroblasts restores the transactivation function of MyoD and the expression of a late marker of skeletal muscle differentiation. These data suggest that nuclear-cytoplasmic communication between pRb and Ras is bidirectional.  相似文献   

12.
Nucleotides are new players in the intercellular communication network. P2X7 is a member of the P2X family of receptors, which are ATP-gated plasma membrane ion channels with diverse biological functions. Abnormal expression and dysfunction of P2X7 have been reported in leukemias. Here, we report a new P2X7 mutant (an A559-to-G substitution causing N187D P2X7) cloned from J6-1 leukemia cells. The characteristics of N187D P2X7 were studied by establishing stably transfected K562 cell lines. Our results show that N187D P2X7 required a higher concentration of agonist for its activation, leading to Ca2+ influx (EC50 = 293.3 ± 6.6 μm for the mutant and 93.6 ± 2.2 μm for wild-type P2X7) and ERK phosphorylation, which were not caused by differential cell-surface expression or related to high ATPase activity on the cell surface and in the extracellular space. K562 cells expressing this N187D mutant showed a proliferative advantage and reduced pro-apoptosis effects in vitro and in vivo. Furthermore, elevated angiogenesis and CD206-positive macrophage infiltration were found in tumor tissues formed by K562-M cells. In addition, higher expression of VEGF and MCP1 could be detected in tumor tissues formed by K562-M cells. Our results suggest that N187D P2X7, representing mutants hyposensitive to agonist, might be a positive regulator in the progression of hematopoietic malignancies.  相似文献   

13.
In higher plants, cellulose is synthesized by plasma membrane–localized cellulose synthase complexes (CSCs). Arabidopsis thaliana GH9A1/KORRIGAN1 is a membrane-bound, family 9 glycosyl hydrolase that is important for cellulose synthesis in both primary and secondary cell walls. Most previously identified korrigan1 mutants show severe phenotypes such as embryo lethality; therefore, the role of GH9A1 in cellulose synthesis remains unclear. Here, we report a novel A577V missense mutation, designated jiaoyao1 (jia1), in the second of the glycosyl hydrolase family 9 active site signature motifs in GH9A1. jia1 is defective in cell expansion in dark-grown hypocotyls, roots, and adult plants. Consistent with its defect in cell expansion, this mutation in GH9A1 resulted in reduced cellulose content and reduced CSC velocity at the plasma membrane. Green fluorescent protein–GH9A1 is associated with CSCs at multiple locations, including the plasma membrane, Golgi, trans-Golgi network, and small CESA-containing compartments or microtubule-associated cellulose synthase compartments, indicating a tight association between GH9A1 and CSCs. GH9A1A577V abolishes the endoglucanase activity of GH9A1 in vitro but does not affect its interaction with CESAs in vitro, suggesting that endoglucanase activity is important for cellulose synthesis. Interestingly, jia1 results in both cellulose microfibril and microtubule disorganization. Our study establishes the important role of endoglucanase in cellulose synthesis and cellulose microfibril organization in plants.  相似文献   

14.
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.  相似文献   

15.
CpGDNA是指含有胞嘧啶-鸟嘌呤模体的未甲基化DNA片段,常存在于细菌、病毒等的基因组以及质粒DNA中,也可通过人工合成。它具有高效的免疫刺激活性,当微生物感染时,CpGDNA的释放向机体免疫系统提供了一种“危险信号”,触发机体保护性免疫应答以清除外来病原体。CpGDNA激活的细胞信号机制包括CpGDNA的内吞,与Toll样受体9(Toll-likere-ceptor9,TLR9)特异性识别及其一系列信号级联反应,从而诱导靶基因的表达,并受到各种内源性因素的反馈调节。现对CpGDNA所激活的受体分子、与TLR9介导的信号转导与调节以及不同类型CpGDNA激活的分子机制等作一综述。  相似文献   

16.
The Notch receptor controls cell fate decisions throughout Drosophila development. Truncated, ligand-independent forms of this protein delay or block differentiation. We have previously shown that expression of the intracellular domain of the receptor under the control of the sevenless enhancer/promoter induces a rough eye phenotype in the adult fly. Analysis of the resultant cellular transformations suggested that this form of Notch acts as a constitutively activated receptor. To identify gene products that interact with Notch, a second-site mutagenesis screen was performed to isolate enhancers and suppressors of the eye phenotype caused by expression of these activated Notch molecules. We screened 137,000 mutagenized flies and recovered 290 dominant modifiers. Many new alleles of previously identified genes were isolated, as were mutations defining novel loci that may function in the Notch signaling pathway. We discuss the data with respect to known features of Notch receptor signaling and Drosophila eye development.  相似文献   

17.
18.
Mutations in the voltage-gated K+ channel Kv1.1 have been linked with a mixed phenotype of episodic ataxia and/or myokymia. Recently, we presented autosomal dominant hypomagnesemia as a new phenotypic characteristic associated with a mutation in Kv1.1 (N255D) (Glaudemans, B., van der Wijst, J., Scola, R. H., Lorenzoni, P. J., Heister, A., van der Kemp, A. W., Knoers, N. V., Hoenderop, J. G., and Bindels, R. J. (2009) J. Clin. Invest. 119, 936–942). A conserved asparagine at position 255 in the third transmembrane segment was converted into an aspartic acid, resulting in a non-functional channel. In this study, we explored the functional consequence of this conserved residue by substitution with other hydrophobic, polar, or charged amino acids (N255E, N255Q, N255A, N255V, N255T, and N255H). Upon overexpression in human embryonic kidney (HEK293) cells, cell surface biotinylation revealed plasma membrane expression of all mutant channels. Next, we used the whole-cell patch clamp technique to demonstrate that the N255E and N255Q mutants were non-functional. Substitution of Asn-255 with other amino acids (N255A, N255V, N255T, and N255H) did not prevent ion conduction, and these mutant channels activated at more negative potentials when compared with wild-type channels, −41.5 ± 1.6, −45.5 ± 2.0, −50.5 ± 1.9, and −33.8 ± 1.3 mV to −29.4 ± 1.1 mV, respectively. The time constant of activation was significantly faster for the two most hydrophobic mutations, N255A (6.2 ± 0.2 ms) and N255V (5.2 ± 0.3 ms), and the hydrophilic mutant N255T (9.8 ± 0.4 ms) in comparison with wild type (13.0 ± 0.9 ms). Furthermore, the voltage dependence of inactivation was shifted ∼13 mV to more negative potentials in all mutant channels except for N255H. Taken together, our data showed that an asparagine at position 255 in Kv1.1 is required for normal voltage dependence and kinetics of channel gating.  相似文献   

19.
A mutant at the yeast MED1 locus was isolated in a screen for sporulation-proficient, meiotic-lethal mutants. Synaptonemal complex formation in the med1 mutant is apparently normal and med1 strains undergo meiotic crossing over at approximately 50% of the wild-type level. The med1 mutant undergoes homolog nondisjunction at meiosis I, presumably as a consequence of the decrease in crossing over. In addition, the mutant undergoes precocious separation of sister chromatids, resulting in chromosome missegregation at both meiotic divisions. We suggest that the med1 mutation perturbs chromosome structure, leading to a reduction in recombination and a defect in sister chromatid cohesion.  相似文献   

20.

Background  

Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm. Activation of the fibroblast growth factor (FGF) signaling pathway induces the corneal epithelial cells to proliferate and the lens epithelial cells to exit the cell cycle. The molecular mechanisms that regulate the differential responses of these two related tissues have not been defined. We have generated transgenic mice that express a constitutively active version of human H-Ras in their lenses and corneas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号