首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translation initiation on poliovirus and encephalomyocarditis virus (EMCV) mRNAs occurs by a cap-independent mechanism utilizing an internal ribosomal entry site (IRES). However, no unifying mechanism for AUG initiation site selection has been proposed. Analysis of initiation of mRNAs translated in vitro has suggested that initiation of poliovirus mRNA translation likely involves both internal binding of ribosomes and scanning to the first AUG which is in a favorable context for initiation. In contrast, internal initiation on EMCV mRNA may not utilize scanning, since ribosomes bind directly or very close to the initiation codon AUG-11. We have studied in vivo the sequence requirements for internal initiation around the EMCV initiation codon, both in monocistronic and in dicistronic mRNAs. Our studies show that the upstream AUG-10 is normally not used and that there is no specific sequence requirement for nucleotides between AUG-10 and AUG-11. However, the sequence context of AUG-11 does influence the efficiency of initiation at AUG-11. Efficient IRES-mediated internal initiation at AUG-11 exhibits a requirement for an adenine in the -3 position, similar to cap-dependent initiation. These results support a model for internal initiation on EMCV mRNA in which scanning starts at or near AUG-11. Although initiation primarily occurs at AUG-11, initiation at multiple downstream AUG codons can be detected. In addition, a poor sequence context around AUG-11 results in increased initiation at one or more downstream AUG codons, indicative of leaky scanning or jumping by the ribosome from AUG-11 mediated by the EMCV IRES.  相似文献   

2.
C U Hellen  T V Pestova    E Wimmer 《Journal of virology》1994,68(10):6312-6322
Initiation of poliovirus translation is mediated by a large, structured segment of the 5' nontranslated region known as the internal ribosome entry site (IRES) and normally occurs 155 nucleotides (nt) downstream of the IRES at AUG743 (the AUG at nucleotide 743). Functional AUG codons introduced at nt 611 or 614 reduced initiation at AUG743 by 10 to 40% in vitro but had no effect on virus phenotype. To investigate the role of the nt 586-743 spacer in greater detail, four intervening termination codons were removed, and an additional AUG triplet at nt 683 was introduced by nucleotide substitution. Initiation at AUG743 was reduced by only 50 to 80%, depending on the number of upstream initiation codons. Initiation at AUG743 was also reduced following insertion of a stable hairpin at nt 630, but the reduction was modest in an ascites carcinoma cell extract. Initiation was more frequent at AUG743 than at AUG683 if mRNAs contained either an upstream initiation codon or the stable hairpin. These results suggested that not all initiation events at AUG743 can be accounted for by a scanning-dependent mechanism. Translation of bicistronic mRNAs in which the intercistronic spacer contained nt 630 to 742 of the poliovirus 5' nontranslated region indicated that these residues are not able to act as an entry point for ribosomes independently of the IRES. Insertion of increasingly longer sequences immediately downstream of the stable hairpin progressively reduced initiation at AUG743 without affecting initiation at AUG683. These results are discussed in terms of a model for initiation of poliovirus translation in which a complex RNA superstructure upstream of nt 586 promotes ribosome binding at an entry point determined by specific downstream cis-acting elements.  相似文献   

3.
4.
Pöyry TA  Jackson RJ 《Journal of virology》2011,85(19):10178-10188
Translation initiation dependent on the foot-and-mouth disease virus (FMDV) internal ribosome entry site (IRES) occurs at two sites (Lab and Lb), 84 nucleotides (nt) apart. In vitro translation of an mRNA comprising the IRES and Lab-Lb intervening segment fused to a chloramphenicol acetyltransferase (CAT) reporter has been used to study the parameters influencing the ratio of the two products and the combined product yield as measures of relative initiation site usage and productive ribosome recruitment, respectively. With wild-type mRNA, ~40% of initiation occurred at the Lab site, which was increased to 90% by optimization of its context, but decreased to 20% by mutations that reduced downstream secondary structure, with no change in recruitment in either case. Inserting 5 nt into the pyrimidine-rich tract located just upstream of the Lab site increased initiation at this site by 75% and ribosome recruitment by 50%. Mutating the Lab site to RCG or RUN codons decreased recruitment by 20 to 30% but stimulated Lb initiation by 20 to 40%. An antisense oligodeoxynucleotide annealing across the Lab site inhibited initiation at both sites. These and related results lead to the following conclusions. Recruitment by the wild-type IRES is limited by its short oligopyrimidine tract. At least 90% of internal ribosome entry occurs at the Lab AUG, but initiation at this site is restricted by its poor context, despite a counteracting effect of downstream secondary structure. Initiation at the Lb site is by ribosomes that access it by linear scanning from the original entry site, and not by an independent entry process.  相似文献   

5.
Initiation of translation of a subset of eukaryotic mRNAs results from internal ribosomal entry. This process is exemplified by encephalomyocarditis virus (EMCV), which contains an internal ribosomal entry site (IRES) within its 5' nontranslated region that is approximately 450-nt long and consists of a series of stem-loops designated H-L. We have previously identified a cellular 58-kDa polypeptide that binds specifically to this IRES and that is implicated in its function as the pyrimidine tract-binding protein PTB. We have now mapped PTB binding sites directly on the IRES elements of EMCV and the related foot-and-mouth disease virus (FMDV) using structure-specific enzymatic probes and base-specific chemical probes. PTB bound to six sites on the EMCV IRES: site 1 (UCUU401) is upstream of domain H, site 2 is the basal helix of domain H (nt 407-410 and 440-443), site 3 (UCUUU423) is the apical loop of domain H, site 4 is the apical helix and adjacent internal bulged loop of domain K, site 5 (CUUUA750) is the apical loop of domain K, and site 6 (CCUUU815) is downstream of domain L. PTB bound to sites on the FMDV IRES that correspond precisely to EMCV sites 3, 5, and 6. These sites have the consensus sequence CUUU and form two groups that are located near to the 5' and 3' borders of these IRES elements. Their position, and the effects of mutation of them on IRES function are consistent with PTB's role in IRES-mediated initiation being to bind to multiple sites in the IRES, thereby stabilizing a specific active conformation.  相似文献   

6.
Most eukaryotic initiation factors (eIFs) are required for internal translation initiation at the internal ribosome entry site (IRES) of picornaviruses. eIF4B is incorporated into ribosomal 48S initiation complexes with the IRES RNA of foot-and-mouth disease virus (FMDV). In contrast to the weak interaction of eIF4B with capped cellular mRNAs and its release upon entry of the ribosomal 60S subunit, eIF4B remains tightly associated with the FMDV IRES during formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. The interaction of eIF4B with the IRES in 48S and 80S complexes is independent of the location of the initiator AUG and thus independent of the mechanism by which the small ribosomal subunit is placed at the actual start codon, either by direct internal ribosomal entry or by scanning. eIF4B does not greatly rearrange its binding to the IRES upon entry of the ribosomal subunits, and the interaction of eIF4B with the IRES is independent of the polypyrimidine tract-binding protein, which enhances FMDV translation.  相似文献   

7.
Picornavirus internal ribosome entry sites (IRESs) are approximately 450 nt. RNA elements that direct internal initiation of translation, such that when placed between the two cistrons of a dicistronic construct, they drive independent translation of the downstream cistron. Consequently they have been widely used for coordinated expression of two or more proteins. All picornavirus IRESs have an AUG triplet at the very 3' end, which is thought to be the actual site of internal ribosome entry. However with some IRESs, such as foot-and-mouth disease virus, and especially poliovirus, the majority of ribosomes do not initiate translation at this putative entry site AUG, but at the next AUG further downstream, which is thought to be accessed by a process of linear ribosome scanning from the entry site. If this is so, then it should be possible to regulate IRES-dependent translation by inserting an iron responsive element (IRE) between the putative entry site AUG and the main functional initiation site. This should make IRES-dependent translation sensitive to the concentration of iron regulatory protein (IRP), the protein that specifically binds to the IRE. This has been attempted with both the foot-and-mouth disease virus and poliovirus IRESs, and was successful in so far as an inhibition specifically of IRES-dependent translation was observed that was strictly dependent on both the presence of IRP and of a functional IRE motif inserted in the sense orientation. However, the range over which expression could be varied was rather limited (three- to fourfold maximum), because some IRES-dependent translation remained completely refractory to inhibition by even very high IRP concentrations. In contrast, with a cap-proximal IRE in the 5' untranslated region of an mRNA translated by the scanning mechanism, addition of sufficient IRP results in complete inhibition. These results support the model of IRES-promoted ribosome entry at an upstream site followed by strictly linear scanning to the main functional initiation site for the majority of internal initiation events, but imply that some ribosomes must access the functional initiation site by another route, possibly a nonlinear shunting-like mechanism.  相似文献   

8.
Translation initiation site usage on the human rhinovirus 2 internal ribosome entry site (IRES) has been examined in a mixed reticulocyte lysate/HeLa cell extract system. There are two relevant AUG triplets, both in a base-paired hairpin structure (domain VI), with one on the 5′ side at nucleotide (nt) 576, base paired with the other at nt 611, which is the initiation site for polyprotein synthesis. A single residue was inserted in the apical loop to put AUG-576 in frame with AUG-611, and in addition another in-frame AUG was introduced at nt 593. When most of the IRES was deleted to generate a monocistronic mRNA, the use of these AUGs conformed to the scanning ribosome model: improving the AUG-576 context increased initiation at this site and decreased initiation at downstream sites, whereas the converse was seen when AUG-576 was mutated to GUA; and AUG-593, when present, took complete precedence over AUG-611. Under IRES-dependent conditions, by contrast, much less initiation occurred at AUG-576 than in a monocistronic mRNA with the same AUG-576 context, mutation of AUG-576 decreased initiation at downstream sites by ∼70%, and introduction of AUG-593 did not completely abrogate initiation at AUG-611, unless the apical base pairing in domain VI was destroyed by point mutations. These results indicate that ribosomes first bind at the AUG-576 site, but instead of initiating there, most of them are transferred to AUG-611, the majority by strictly linear scanning and a substantial minority by direct transfer, which is possibly facilitated by the occasional persistence of base pairing in the apical part of the domain VI stem.Until the recent discovery of animal picornaviruses with internal ribosome entry sites (IRESs) resembling that of hepatitis C virus, most picornavirus IRESs have been classified into two groups (1, 17): type 1 (exemplified by entero- and rhinoviruses) and type 2 (cardio- and aphthoviruses). Primary sequences and especially secondary structures are strongly conserved within each group but there is very little similarity between the two groups apart from an AUG triplet at the 3′ end of the IRES (as defined by deletion analysis), which is preceded by a ∼25 nucleotide (nt) pyrimidine-rich tract (17). In type 2 IRESs, notably encephalomyocarditis virus (EMCV), this AUG triplet is the authentic initiation codon for viral polyprotein synthesis, and the totality of the evidence indicates that all ribosomes bind at, or very close to, this AUG and that all initiate translation at this site (18, 19). The foot-and-mouth disease virus (FMDV), although a type 2 IRES, is not quite so straightforward in that a minority of initiation events occur at the AUG immediately downstream of the oligopyrimidine tract, and the rest occur at the next AUG, 84 nt downstream (3, 45).In contrast, initiation on type 1 IRESs seems much more complicated and rather puzzling. The first puzzling feature is that there is very little, if any, initiation at the AUG just downstream of the oligopyrimidine tract, at nt 586 in poliovirus type 1 (PV-1) (39), and the initiation site for polyprotein synthesis is the next AUG further downstream, at a distance of ∼160 nt in enteroviruses and ∼35 nt in rhinoviruses (17). Nevertheless, AUG-586 is important for efficient initiation at the authentic polyprotein initiation site. Mutation of AUG-586 in a PV-1 infectious clone was found to be quasi-infectious (42), while mutation of the equivalent site in PV-2 conferred a small-plaque phenotype and reduced initiation at the polyprotein initiation site by ∼70% in both in vitro assays and in transfection assays (32, 33, 37).This observation has led to the idea that ribosomes first bind at AUG-586, but instead of initiating at this site, virtually all of them get transferred to the polyprotein initiation site (17). This raises questions as to the nature of the transfer process. Because insertion of an AUG codon between PV-1 nt 586 and the authentic initiation site conferred a small-plaque phenotype and because all large-plaque pseudo-revertants had lost the inserted AUG either by deletion or point mutation (25, 26), linear scanning is likely to be important. However, as the insertion resulted in a small-plaque phenotype rather than lethality, there remains the possibility that some ribosomes were transferred directly without scanning the whole distance. This has also been suggested on the grounds that insertion of AUGs or a hairpin loop between nt 586 and the authentic initiation site of PV-1 did not seem to reduce polyprotein synthesis in vitro as much as might be expected if the authentic initiation site is accessed by strictly linear scanning (8).The final puzzle is that AUG-586 is located in a stem-loop structure, domain VI (Fig. (Fig.1A),1A), which is conserved in all entero- and rhinoviruses apart from bovine enterovirus. If the initiating 40S subunits do inspect AUG-586 in some way, albeit an unproductive way, this stem-loop would need to open at least partly, if not completely. This need for domain VI to be opened might be considered an impediment to efficient initiation, and yet its strong conservation suggests the opposite, namely, that it might have a positive effect. Precise deletion of the spacer downstream of AUG-586 in PV-1(Mahoney), so that polyprotein synthesis now started at 586, reduced virus yield by ∼10-fold (39), and in an independent study a deletion that brought the polyprotein initiation site to nt 586 or 580 caused a very similar growth defect in PV-1(Sabin) although the defect was considerably less in a Mahoney background (13, 27). On the other hand, two smaller deletions in PV-1(Sabin) that retained just the whole base-paired domain VI or only its 5′ side, placing the polyprotein initiation site 52 or 31 nt, respectively, downstream of AUG-586, did not confer any significant negative phenotype (13, 27). Taken together, these results would seem to imply that the base pairing in domain VI is neutral to initiation efficiency, but the primary sequence of its 5′ side may confer a moderate positive effect. In this respect it is interesting that bovine enterovirus retains most of the sequence of the 5′ side of domain VI but lacks the complementary sequence of the 3′ side.Open in a separate windowFIG. 1.(A) Sequence and base pairing of IRES domain VI of HRV-2 and PV-1(Mahoney), numbered with respect to the viral genome sequence. (B) Hypothetical model for the opening of HRV-2 domain VI in two stages, showing that in the intermediate state AUG-576 and AUG-611 are both exposed.We have reexamined these issues but in the context of human rhinovirus 2 (HRV-2), mainly because the close proximity of the polyprotein initiation site (at nt 611) to the AUG (at nt 576) just downstream of the oligopyrimidine tract makes the interpretation of results less ambiguous than is the case with enteroviruses. A recent comprehensive sequence comparison of 106 different HRV strains plus 10 field isolates shows that HRV-2 domain VI is typical of the 106 serotypes and the one field isolate that differs in domain VI from its parent strain (35). In 95% of these sequences, the number of residues between the two AUG codons is in the range of 28 to 34 nt (median, 31 nt), with five outliers at 20 or 22 nt. The two AUGs are invariably base paired in a back-to-back configuration (Fig. (Fig.1A),1A), and the intervening residues fold into a base-paired structure, usually with a single mismatch (Fig. (Fig.1A)1A) or at least one G-U codon at around the mid-point and an apical loop of 3 to 6 residues (depending on the strain). The base-paired stem of enteroviruses is considerably shorter (usually without a mismatch), and the extra length in HRV domain VI generally consists of A-U and U-A pairs (often alternating) in the apical part (Fig. (Fig.1A).1A). In 23% of these 107 HRV domain VI sequences, the two AUGs are in the same reading frame, and in 17 (approximately two-thirds) of these there is no in-frame stop codon between them so that any initiation at the upstream AUG would result in synthesis of a VP0 protein (and, hence, also VP4) with an N-terminal extension.We first asked whether AUG-576 in HRV-2 is similar to AUG-586 in PV-1 in that there is very little initiation at this site, and yet AUG-576 is important for efficient initiation at the downstream polyprotein initiation site. We then looked for evidence that the domain VI stem-loop opens and whether all ribosomes access the authentic initiation site (AUG-611) by strictly linear scanning from some upstream site. We conclude that most ribosomes do access AUG-611 in this way, but a significant minority may take a shortcut, which could be facilitated if the apical part of this domain remains closed and base paired, with the single mismatch in the domain VI stem possibly causing the opening of this domain to occur in two stages (Fig. (Fig.1B1B).  相似文献   

9.
Hinton TM  Li F  Crabb BS 《Journal of virology》2000,74(24):11708-11716
Equine rhinitis A virus (ERAV) has recently been classified as an aphthovirus, a genus otherwise comprised of the different serotypes of Foot-and-mouth disease virus (FMDV). FMDV initiates translation via a type II internal ribosomal entry site (IRES) and utilizes two in-frame AUG codons to produce the leader proteinases Lab and Lb. Here we show that the ERAV 5' nontranslated region also possesses the core structures of a type II IRES. The functional activity of this region was characterized by transfection of bicistronic plasmids into BHK-21 cells. In this system the core type II structures, stem-loops D to L, in addition to a stem-loop (termed M) downstream of the first putative initiation codon, are required for translation of the second reporter gene. In FMDV, translation of Lb is more efficient than that of Lab despite the downstream location of the Lb AUG codon. The ERAV genome also has putative initiation sites in positions similar to those utilized in FMDV, except that in ERAV these are present as two AUG pairs (AUGAUG). Using the bicistronic expression system, we detected initiation from both AUG pairs, although in contrast to FMDV, the first site is strongly favored over the second. Mutational analysis of the AUG codons indicated that AUG2 is the major initiation site, although AUG1 can be accessed, albeit inefficiently, in the absence of AUG2. Further mutational analysis indicated that codons downstream of AUG2 appear to be accessed by a mechanism other than leaky scanning. Furthermore, we present preliminary evidence that it is possible for ribosomes to access downstream of the two AUG pairs. This study reveals important differences in IRES function between aphthoviruses.  相似文献   

10.
The initiation of encephalomyocarditis virus RNA translation is by internal ribosome entry almost exclusively at the 11th AUG codon from the 5'-end, which is the central of the three AUG codons in the sequence..[sequence: see text].., and is located some 25 nt downstream from an oligopyrimidine tract conserved amongst related viruses. As the sequences between the oligopyrimidine tract and AUG-10/11 are poorly conserved and thus possibly serve only as a spacer, the influence of this spacer length on initiation frequency at the three AUG codons was examined in vitro and in vivo. Deletion of 11 residues resulted in initiation almost exclusively at AUG-12 but at significantly reduced overall efficiency. Insertion of eight residues caused a 15-fold increase in initiation frequency at AUG-10 and a decrease at AUG-11. Longer insertions reduced overall efficiency without changing the initiation site preferences. With the wild-type spacing, complete substitution of the oligopyrimidine tract by purines caused a 30-35% decrease in initiation efficiency, and partial substitution only a 10-15% decrease. Thus the internal initiation mechanism selects the initiation site partly on the basis of its distance from upstream elements, of which the oligopyrimidine tract is not the most critical, but for reasons not yet understood a preference for AUG-11 is superimposed on this selection.  相似文献   

11.
Hepatitis C viral (HCV) RNA includes an internal ribosome entry segment (IRES) that extends some 30 nt into the coding region and promotes internal initiation of translation at the authentic initiation codon at nt 342. The 5'-boundary of this IRES was mapped by in vitro translation and transfection assays and was found to lie between nt 42 and 71. Within these IRES boundaries there are, in most HCV strains, three AUG triplets upstream of the authentic initiation site. Although the first, 5'-proximal, of these is absolutely conserved, a mutational analysis showed that it is not a functional initiation codon. In particular, the G residue could be substituted provided compensatory mutations were made to maintain base pairing. The other two upstream AUGs are not absolutely conserved, and mutation of the third (5'-distal) had little effect on IRES activity. When an additional AUG codon was introduced by single-site mutation just upstream of the authentic initiation codon, it was found to be used when most of the IRES had been deleted to generate an RNA translated by the scanning ribosome mechanism, but was not used in the background of the full-length IRES when internal initiation is operative. These results argue that the IRES promotes direct ribosome entry immediately at, or indeed very close to, the authentic initiation codon, and that the upstream AUGs do not serve as ribosome entry sites.  相似文献   

12.
13.
The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES). A thorough deletion analysis study within the 5'-ATR led us to define a 176-nt region as being necessary and sufficient for IRES function at four codons present in a downstream 308-nt RNA segment. Unexpectedly, a single IRES module is therefore responsible for translation initiation at four distantly localized codons. The determination of the FGF-2 5'-ATR RNA secondary structure by enzymatic and chemical probing experiments showed that the FGF-2 IRES contained two stem-loop regions and a G quartet motif that constitute novel structural determinants of IRES function.  相似文献   

14.
Eukaryotic translation initiation begins with assembly of a 48S ribosomal complex at the 5' cap structure or at an internal ribosomal entry segment (IRES). In both cases, ribosomal positioning at the AUG codon requires a 5' untranslated region upstream from the initiation site. Here, we report that translation of the genomic RNA of human immunodeficiency virus type 2 takes place by attachment of the 48S ribosomal preinitiation complex to the coding region, with no need for an upstream 5' untranslated RNA sequence. This unusual mechanism is mediated by an RNA sequence that has features of an IRES with the unique ability to recruit ribosomes upstream from its core domain. A combination of translation assays and structural studies reveal that sequences located 50 nucleotides downstream of the AUG codon are crucial for IRES activity.  相似文献   

15.
G J Belsham 《The EMBO journal》1992,11(3):1105-1110
The initiation of protein synthesis on foot-and-mouth disease virus RNA occurs at two sites separated by 84 nucleotides. Immediately upstream from the first of these sites is the internal ribosome entry site (IRES), which directs the translation of this RNA to be cap-independent. The utilization of these two initiation sites has been examined using artificial fusion genes in vivo under a variety of conditions. Additional in-frame AUG codons have been introduced between these two authentic start sites to determine the mechanism by which ribosomes recognize the second start site. The results indicate that following internal entry of ribosomes on the 5' side of the first initiation codon, many fail to initiate protein synthesis at this position and scan along the RNA to the second initiation site. In the presence or absence of the IRES both initiation sites are efficiently used but the utilization of the two sites is slightly biased towards the second initiation site by the IRES. Furthermore, in the presence of the IRES, protein synthesis initiates at both sites independently of the activity of the cap-binding complex.  相似文献   

16.
The initiation of translation on the positive-sense RNA genome of hepatitis C virus (HCV) is directed by an internal ribosomal entry site (IRES) that occupies most of the 341-nt 5' nontranslated RNA (5'NTR). Previous studies indicate that this IRES differs from picornaviral IRESs in that its activity is dependent upon RNA sequence downstream of the initiator AUG. Here, we demonstrate that the initiator AUG of HCV is located within a stem-loop (stem-loop IV) involving nt -12 to +12 (with reference to the AUG). This structure is conserved among HCV strains, and is present in the 5'NTR of the phylogenetically distant GB virus B. Mutant, nearly genome-length RNAs containing nucleotide substitutions predicted to enhance the stability of stem-loop IV were generally deficient in cap-independent translation both in vitro and in vivo. Additional mutations that destabilize the stem-loop restored translation to normal. Thus, the stability of the stem-loop is strongly but inversely correlated with the efficiency of internal initiation of translation. In contrast, mutations that stabilize this stem-loop had comparatively little effect on translation of 5' truncated RNAs by scanning ribosomes, suggesting that internal initiation of translation follows binding of the 40S ribosome directly at the site of stem-loop IV. Because stem-loop IV is not required for internal entry of ribosomes but is able to regulate this process, we speculate that it may be stabilized by interactions with a viral protein, providing a mechanism for feedback regulation of translation, which may be important for viral persistence.  相似文献   

17.
Some studies suggest that the hepatitis C virus (HCV) internal ribosome entry site (IRES) requires downstream 5' viral polyprotein-coding sequence for efficient initiation of translation, but the role of this RNA sequence in internal ribosome entry remains unresolved. We confirmed that the inclusion of viral sequence downstream of the AUG initiator codon increased IRES-dependent translation of a reporter RNA encoding secretory alkaline phosphatase, but found that efficient translation of chloramphenicol acetyl transferase (CAT) required no viral sequence downstream of the initiator codon. However, deletion of an adenosine-rich domain near the 5' end of the CAT sequence, or the insertion of a small stable hairpin structure (deltaG = -18 kcal/mol) between the HCV IRES and CAT sequences (hpCAT) substantially reduced IRES-mediated translation. Although translation could be restored to both mutants by the inclusion of 14 nt of the polyprotein-coding sequence downstream of the AUG codon, a mutational analysis of the inserted protein-coding sequence demonstrated no requirement for either a specific nucleotide or amino acid-coding sequence to restore efficient IRES-mediated translation to hpCAT. Similar results were obtained with the structurally and phylogenetically related IRES elements of classical swine fever virus and GB virus B. We conclude that there is no absolute requirement for viral protein-coding sequence with this class of IRES elements, but that there is a requirement for an absence of stable RNA structure immediately downstream of the AUG initiator codon. Stable RNA structure immediately downstream of the initiator codon inhibits internal initiation of translation but, in the case of hpCAT, did not reduce the capacity of the RNA to bind to purified 40S ribosome subunits. Thus, stable RNA structure within the 5' proximal protein-coding sequence does not alter the capacity of the IRES to form initial contacts with the 40S subunit, but appears instead to prevent the formation of subsequent interactions between the 40S subunit and viral RNA in the vicinity of the initiator codon that are essential for efficient internal ribosome entry.  相似文献   

18.
Some viruses exploit internal initiation for their propagation in the host cell. This type of initiation is facilitated by structured elements (internal ribosome entry site, IRES) upstream of the initiator AUG and requires only a reduced number of canonical initiation factors. An important example are IRES of the virus family Dicistroviridae that bind to the inter-subunit side of the small ribosomal 40S subunit and lead to the formation of elongation-competent 80S ribosomes without the help of any initiation factor. Here, we present a comprehensive functional and structural analysis of eukaryotic-specific ribosomal protein rpS25 in the context of this type of initiation and propose a structural model explaining the essential involvement of rpS25 for hijacking the ribosome.  相似文献   

19.
Translation initiation on foot-and-mouth disease virus (FMDV) RNA occurs by a cap-independent mechanism directed by a highly structured element (approximately 435 nt) termed an internal ribosome entry site (IRES). A functional assay to identify proteins that bind to the FMDV IRES and are necessary for FMDV IRES-mediated translation initiation has been developed. In vitro-transcribed polyadenylated RNAs corresponding to the whole or part of the FMDV IRES were immobilized on oligo-dT Dynabeads and used to deplete rabbit reticulocyte lysate (RRL) of IRES-binding proteins. Translation initiation factors eIF4G, eIF4A, and eIF4B bound to the 3' domain of the FMDV IRES. Depletion of eIF4G from RRL by this region of the FMDV IRES correlated with the loss of translational capacity of the RRL for capped, uncapped, and FMDV IRES-dependent mRNAs. However, this depleted RRL still supported hepatitis C virus IRES-directed translation. Poly (rC) binding protein-2 bound to the central domain of the FMDV IRES, but depletion of RRL with this IRES domain had no effect on FMDV IRES-directed translation initiation.  相似文献   

20.
M Niepmann  A Petersen  K Meyer    E Beck 《Journal of virology》1997,71(11):8330-8339
The synthesis of picornavirus polyproteins is initiated cap independently far downstream from the 5' end of the viral RNA at the internal ribosome entry site (IRES). The cellular polypyrimidine tract-binding protein (PTB) binds to the IRES of foot-and-mouth disease virus (FMDV). In this study, we demonstrate that PTB is a component of 48S and 80S ribosomal initiation complexes formed with FMDV IRES RNA. The incorporation of PTB into these initiation complexes is dependent on the entry of the IRES RNA, since PTB and IRES RNA can be enriched in parallel either in 48S or 80S ribosomal complexes by stage-specific inhibitors of translation initiation. The formation of the ribosomal initiation complexes with the IRES occurs slowly, is temperature dependent, and correlates with the incorporation of PTB into these complexes. In a first step, PTB binds to the IRES, and then the small ribosomal subunit encounters this PTB-IRES complex. Mutations in the major PTB-binding site interfere simultaneously with the formation of initiation complexes, translation efficiency, and PTB cross-linking. PTB stimulates translation directed by the FMDV IRES in a rabbit reticulocyte lysate depleted of internal PTB, and the efficiency of translation can be restored to the original level by the addition of PTB. These results indicate that PTB plays an important role in the formation of initiation complexes with FMDV IRES RNA and in stimulation of internal translation initiation with this picornavirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号