首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of reproductive isolation during plant speciation are often unclear because distinct species often experience high levels of gene flow and hybridization. Adaptive radiations such as the Hawaiian silversword alliance (HSA) provide unique opportunities to study the interactions of selection, gene flow and isolating mechanisms during the speciation process. We examined patterns of phenotypic and genetic differentiation in Dubautia arborea and Dubautia ciliolata, two parapatric HSA taxa that show marked morphological divergence but evidence of weak molecular differentiation, in order to estimate genome-wide differentiation and gene flow patterns. We scored 166 amplified fragment length polymorphism markers in a set of 89 plants from two populations each of D. arborea and D. ciliolata and phenotypically D. arborea-like and D. ciliolata-like plants from a natural hybrid zone. Analyses of population subdivision showed low levels of differentiation between the two species (F(ST) = 0.089) and evidence that the phenotypically parental hybrid zone plants were largely of parental species rather than of hybrid origin. A Bayesian analysis of population ancestry identified a number of plants with admixed D. arborea and D. ciliolata ancestry, even in nonhybrid-zone populations. These results suggest that genome-wide low levels of differentiation between D. arborea and D. ciliolata are in part due to gene flow, and favour models of genic speciation and collective evolution in which gene flow has different effects on selected loci vs. nonselected genomic regions. We discuss ecological and climatic factors that may have shaped patterns of differentiation in this species complex.  相似文献   

2.
Habitat fragmentation can lead to a decline of genetic diversity, a potential risk for the survival of natural populations. Fragmented populations can become highly differentiated due to reduced gene flow and genetic drift. A decline in number of individuals can result in lower reproductive fitness due to inbreeding effects. We investigated genetic variation within and between 11 populations of the rare and endangered plant Silene chlorantha in northeastern Germany to support conservation strategies. Genetic diversity was evaluated using AFLP techniques and the results were correlated to fitness traits. Fitness evaluation in nature and in a common garden approach was conducted. Our analysis revealed population differentiation was high and within population genetic diversity was intermediate. A clear population structure was supported by a Bayesian approach, AMOVA and neighbour-joining analysis. No correlation between genetic and geographic distance was found. Our results indicate that patterns of population differentiation were mainly caused by temporal and/or spatial isolation and genetic drift. The fitness evaluation revealed that pollinator limitation and habitat quality seem, at present, to be more important to reproductive fitness than genetic diversity by itself. Populations of S. chlorantha with low genetic diversity have the potential to increase in individual number if habitat conditions improve. This was detected in a single large population in the investigation area, which was formerly affected by bottleneck effects.  相似文献   

3.
Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.  相似文献   

4.
How do we quantify patterns (such as responses to local selection) sampled across multiple populations within a single species? Key to this question is the extent to which populations within species represent statistically independent data points in our analysis. Comparative analyses across species and higher taxa have long recognized the need to control for the non-independence of species data that arises through patterns of shared common ancestry among them (phylogenetic non-independence), as have quantitative genetic studies of individuals linked by a pedigree. Analyses across populations lacking pedigree information fall in the middle, and not only have to deal with shared common ancestry, but also the impact of exchange of migrants between populations (gene flow). As a result, phenotypes measured in one population are influenced by processes acting on others, and may not be a good guide to either the strength or direction of local selection. Although many studies examine patterns across populations within species, few consider such non-independence. Here, we discuss the sources of non-independence in comparative analysis, and show why the phylogeny-based approaches widely used in cross-species analyses are unlikely to be useful in analyses across populations within species. We outline the approaches (intraspecific contrasts, generalized least squares, generalized linear mixed models and autoregression) that have been used in this context, and explain their specific assumptions. We highlight the power of ‘mixed models’ in many contexts where problems of non-independence arise, and show that these allow incorporation of both shared common ancestry and gene flow. We suggest what can be done when ideal solutions are inaccessible, highlight the need for incorporation of a wider range of population models in intraspecific comparative methods and call for simulation studies of the error rates associated with alternative approaches.  相似文献   

5.
The distribution of genetic variants in plant populations is strongly affected both by current patterns of microevolutionary forces, such as gene flow and selection, and by the phylogenetic history of populations and species. Understanding the interplay of shared history and current evolutionary events is particularly confounding in plants due to the reticulating nature of gene exchange between diverging lineages. Certain gene sequences provide historically ordered neutral molecular variation that can be converted to gene genealogies which trace the evolutionary relationships among haplotypes (alleles). Gene genealogies can be used to understand the evolution of specific DNA sequences and relate sequence variation to plant phenotype. For example, in a study of the RPS2 gene in Arabidopsis thaliana, resistant phenotypes clustered in one portion of the gene tree. The field of phylogeography examines the distribution of allele genealogies in an explicit geographical context and, when coupled with a nested clade analysis, can provide insight into historical processes such as range expansion, gene flow, and genetic drift. A phylogeographical approach offers insight into practical issues as well. Here we show how haplotype trees can address the origins of invasive plants, one of the greatest global threats to biodiversity. A study of the geographical diversity of haplotypes in invasive Phragmites populations in the United States indicates that invasiveness is due to the colonization and spread of distinct genotypes from Europe ( Saltonstall 2002). Likewise, a phylogeographical analysis of Tamarix populations indicates that hybridization events between formerly isolated species of Eurasia have produced the most common genotype of the second-worst invasive plant species in the United States.  相似文献   

6.
The geographical distribution of existing populations of horse chestnut (Aesculus hippocastanum L.) in Europe is determined by past demographic events during the Quaternary. In the present study we evaluate the imprints that northward expansions originated from common ancestry at southern Europe may have left on the present patterns of genetic variation for horse chestnut across the continent. Genetic diversity and levels of population structure in a European south–north gradient, ranging from the Balkans to the Scandinavian Peninsula, were determined with Amplified Fragment Length Polymorphism (AFLP) markers in 159 loci. A family of rarefaction techniques for the estimation of gene diversity was used to exclude potential confounding effects as a result of the unequal sample sizes. The results indicate that northern populations are not more genetically depleted than southern populations, thus suggesting that diversity for this species is not correlated with latitudinal distribution. Detailed hypotheses based on prediction models for different historical events associated with human‐mediated spread of cultivation are examined for a better understanding of the current genetic patterns of regional differentiation.  相似文献   

7.
Knowledge of the origin and domestication history of crop plants is important for studies aiming at avoiding the erosion of genetic resources due to the loss of ecotypes and landraces and habitats and increased urbanization. Such knowledge also strengthens the capacity of modern farming system to develop and scale-up the domestication of high value potential crops that can be achieved by improving the knowledge that help to identify and select high value plant species within their locality, identify and apply the most appropriate propagation techniques for improving crops and integrate improved crop species into the farming systems. The study of domestication history and ancestry provide means for germplasm preservation through establishment of gene banks, largely as seed collections, and preservation of natural habitats. Information about crop evolution and specifically on patterns of genetic change generated by evolution prior, during, and after domestication, is important to develop sound genetic conservation programs of genetic resources of crop plants and also increases the efficiency of breeding programs. In recent years, molecular approaches have contributed to our understanding of the aspects of plant evolution and crops domestication. In this article, aspects of crops domestication are outlined and the role of molecular data in elucidating the ancestry and domestication of crop plants are outlined. Particular emphasis is given to the contribution of molecular approaches to the origin and domestication history of barley and the origin and ancestry of the Egyptian clover.  相似文献   

8.
Genetic structure and phylogeographic patterns of natural populations are of great importance in assessing the conservation status of species. These population properties can be estimated using molecular markers of either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) to understand the historical, ecological and dispersal patterns that influence genetic exchange within and between populations. Basilinna xantusii is a sexually dimorphic hummingbird endemic to the Baja California Peninsula (BCP). It comprises three ancestral mitochondrial lineages linked to vicariant events, late Pleistocene climate changes and the geographical distribution of oases. This study aimed to determine and understand the current population genetic structure of this hummingbird. The genotypes of 16 microsatellite loci from 100 individuals collected across the geographical range of this species were compared with mtDNA sequences previously published. Cluster analyses identified five populations, two with almost no genetic admixture in the northern part of the BCP and three others with varying levels of admixed ancestry across the BCP. In San José de Magdalena, at the northernmost end of the range of Xantus's Hummingbird, 40% of individuals collected belong to one genetic cluster and the remaining 60% to another, both genetic clusters showing very little admixed ancestry. We hypothesize that, despite being in sympatry, these individuals do not interbreed, unlike the other populations where individuals showed ancestry coefficients of the other genetic groups. The philopatric behaviour of males and the long-range dispersal capacity of females probably determine the observed genetic differentiation pattern. The mito-nuclear discordance detected could be due to the molecular markers used and to female-biased dispersal. Gene flow is asymmetric in this species, being greater from north to south than vice versa, which is probably related to differences in the seasonality of precipitation across the BCP and to urbanization of the oases.  相似文献   

9.
Humans reached present-day Island Southeast Asia (ISEA) in one of the first major human migrations out of Africa. Population movements in the millennia following this initial settlement are thought to have greatly influenced the genetic makeup of current inhabitants, yet the extent attributed to different events is not clear. Recent studies suggest that south-to-north gene flow largely influenced present-day patterns of genetic variation in Southeast Asian populations and that late Pleistocene and early Holocene migrations from Southeast Asia are responsible for a substantial proportion of ISEA ancestry. Archaeological and linguistic evidence suggests that the ancestors of present-day inhabitants came mainly from north-to-south migrations from Taiwan and throughout ISEA approximately 4,000 years ago. We report a large-scale genetic analysis of human variation in the Iban population from the Malaysian state of Sarawak in northwestern Borneo, located in the center of ISEA. Genome-wide single-nucleotide polymorphism (SNP) markers analyzed here suggest that the Iban exhibit greatest genetic similarity to Indonesian and mainland Southeast Asian populations. The most common non-recombining Y (NRY) and mitochondrial (mt) DNA haplogroups present in the Iban are associated with populations of Southeast Asia. We conclude that migrations from Southeast Asia made a large contribution to Iban ancestry, although evidence of potential gene flow from Taiwan is also seen in uniparentally inherited marker data.  相似文献   

10.
Genetic diversity was examined at 16 allozyme loci in 21 wild populations of the medicinal plant American ginseng, Panax quinquefolius L. (Araliaceae). This species has been harvested from forests in North America for more than 250 years. Average expected heterozygosity was significantly greater within protected populations (H(e) = 0.076) than within populations in which harvesting was permitted (H(e) = 0.070). More notably, genetic structure was greater among unprotected populations (G(ST) = 0.491) than among protected populations (G(ST) = 0.167). These differences in the level and distribution of genetic diversity in American ginseng populations indicate that harvesting may have significant evolutionary implications for this species. Age class structure also shifted toward smaller, nonreproductive plants in unprotected populations. Juvenile plants had lower genetic diversity (H(e) = 0.067) than reproductive plants (H(e) = 0.076) suggesting that conserving a proportion of the largest (oldest) plants in each population is important to protect reproductive fitness and the evolutionary potential of the species. Due to its high genetic structure, conservation recommendations include protecting populations throughout the range of P. quinquefolius.  相似文献   

11.
Firmly rooted as we are in the genomic era, it can seem incredible that as recently as 1974, Lewontin declared, 'we know virtually nothing about the genetic changes that occur in species formation'. To the contrary, we now know the genetic architecture of phenotypic differences and reproductive isolation between species for many diverse groups of plants, animals, and fungi. In recent years, detailed genetic analyses have produced a small but growing list of genes that cause reproductive isolation, several of which appear to have diverged by natural selection. Yet, a full accounting of the speciation process requires that we understand the reproductive and ecological properties of natural populations as they begin to diverge genetically, as well as the dynamics of newly evolved barriers to gene flow. One promising approach to this problem is the study of natural hybrid zones, where gene exchange between divergent populations can produce recombinant genotypes in situ . In such individuals, genomic variation might be shaped by introgression at universally adaptive or neutral loci, even as regions associated with local adaptation or reproductive isolation remain divergent. In Nolte et   al . (2009) , the authors take advantage of two independent, recently formed hybrid zones between sculpin species to investigate genome-wide patterns of reproductive isolation. Using a recently developed genomic clines method, the authors identify marker loci that are associated with isolation, and those that show evidence for adaptive introgression. Remarkably, Nolte et   al . (2009) find little similarity between the two hybrid zones in patterns of introgression, a fact that might reflect genetic variation within species or heterogeneous natural selection. In either case, their study system has the potential to provide insight into the early stages of speciation.  相似文献   

12.
In theory, conservation genetics predicts that forest fragmentation will reduce gene dispersal, but in practice, genetic and ecological processes are also dependent on other population characteristics. We used Bayesian genetic analyses to characterize parentage and propagule dispersal in Heliconia acuminata L. C. Richard (Heliconiaceae), a common Amazonian understory plant that is pollinated and dispersed by birds. We studied these processes in two continuous forest sites and three 1‐ha fragments in Brazil's Biological Dynamics of Forest Fragments Project. These sites showed variation in the density of H. acuminata. Ten microsatellite markers were used to genotype flowering adults and seedling recruits and to quantify realized pollen and seed dispersal distances, immigration of propagules from outside populations, and reproductive dominance among parents. We tested whether gene dispersal is more dependent on fragmentation or density of reproductive plants. Low plant densities were associated with elevated immigration rates and greater propagule dispersal distances. Reproductive dominance among inside‐plot parents was higher for low‐density than for high‐density populations. Elevated local flower and fruit availability is probably leading to spatially more proximal bird foraging and propagule dispersal in areas with high density of reproductive plants. Nevertheless, genetic diversity, inbreeding coefficients and fine‐scale spatial genetic structure were similar across populations, despite differences in gene dispersal. This result may indicate that the opposing processes of longer dispersal events in low‐density populations vs. higher diversity of contributing parents in high‐density populations balance the resulting genetic outcomes and prevent genetic erosion in small populations and fragments.  相似文献   

13.
Small habitat size and spatial isolation may cause plant populations to suffer from genetic drift and inbreeding, leading to a reduced fitness of individual plants. We examined the germination, establishment, growth, and reproductive capacity of two characteristic species of mown fen meadows, Carex davalliana, and Succisa pratensis, common in Switzerland. Plants were grown from seeds, which were collected in 18 habitat islands, differing in size and in degree of isolation. We used both common garden and reciprocal transplant experiments to assess effects of habitat fragmentation. In the common garden, plants of Carex originating from small habitat islands yielded 35% less biomass, 30% fewer tillers, and 45% fewer flowering tillers than plants from larger ones. In contrast, plants of Succisa originating from small habitat islands yielded 19% more biomass, 14% more flower heads and 35% more flowers per flower head than plants from larger ones. Moreover, plants of Succisa from small isolated habitats yielded 32% more rosettes than did plants from small connected islands. Reciprocally transplanted plants of Succisa originating from small habitat islands produced 7% more rosettes than plants from larger ones. There was no effect of small habitat size and isolation on germination and establishment of both species in the field. Our results document genetic differences in performance attributable to habitat fragmentation in both species. We suggest that fitness loss in Carex is caused by inbreeding depression, whereas in Succisa the differences in fitness are more likely caused by genetic differentiation. Our study implies that habitat fragmentation affects common habitat-specific species, such as Carex and Succisa, as well as rare ones.  相似文献   

14.
Together with reduction in habitat area and quality, reduction in habitat connectivity is one of the major factors influencing species’ persistence in fragmented landscapes. We explore the consequences of recent habitat fragmentation on volcanoes across Isabela Island, Galápagos by analyzing genetic patterns of populations of endemic weevils whose host plants have been depleted by indiscriminate goat grazing. We predicted that if grazing on the weevils’ host plants has caused habitat fragmentation on the weevils populations themselves, then the effects on the genetic architecture of populations should be more severe on Galapaganus conwayensis populations from volcanoes on Northern Isabela than on those from Santa Cruz or Pinta islands where vegetation destruction was not as extensive. We used mitochondrial sequences to reveal historical colonization patterns and microsatellite variation to understand more contemporary genetic changes. We found significantly lower microsatellite genetic diversity and population size within localities and increased genetic differentiation at a small geographic scale with a stronger isolation by distance pattern and larger numbers of genetic clusters on Isabela. In the absence of long-standing mitochondrial structure within each volcano, we interpret the microsatellite results as suggesting that recent host plant habitat fragmentation may indeed influence the genetic patterns of plant feeding insects and highlight the importance of controlling the spread of introduced herbivores in the Galápagos Islands.  相似文献   

15.
Most plants combine sexual reproduction with asexual clonal reproduction in varying degrees, yet the genetic consequences of reproductive variation remain poorly understood. The aquatic plant Butomus umbellatus exhibits striking reproductive variation related to ploidy. Diploids produce abundant viable seed whereas triploids are sexually sterile. Diploids also produce hundreds of tiny clonal bulbils, whereas triploids exhibit only limited clonal multiplication through rhizome fragmentation. We investigated whether this marked difference in reproductive strategy influences the diversity of genotypes within populations and their movement between populations by performing two large-scale population surveys (n = 58 populations) and assaying genotypic variation using random amplified polymorphic DNA (RAPDs). Contrary to expectations, sexually fertile populations did not exhibit higher genotypic diversity than sterile populations. For each cytotype, we detected one very common and widespread genotype. This would only occur with a very low probability (< 10-7) under regular sexual recombination. Compatibility analysis also indicated that the pattern of genotypic variation largely conformed to that expected with predominant clonal reproduction. The potential for recombination in diploids is not realized, possibly because seeds are outcompeted by bulbils for safe sites during establishment. We also failed to find evidence for more extensive movement of fertile than sterile genotypes. Aside from the few widespread genotypes, most were restricted to single populations. Genotypes in fertile populations were very strongly differentiated from those in sterile populations, suggesting that new triploids have not arisen during the colonization of North America. The colonization of North America involves two distinct forms of B. umbellatus that, despite striking reproductive differences, exhibit largely clonal population genetic structures.  相似文献   

16.
Size-dependent or allometric relationships between reproductive and vegetative size are extremely common in plant populations. Reproductive allometry where plant size differences are due to environmental variability has been interpreted both as an adaptive strategy of plant growth and allocation, and as the product of fixed developmental constraints. Patterns of development are crucial in defining reproductive allometry but development is not fixed across individuals. For example, environmental adversity (e.g. resource impoverishment) tends to favor reproduction at relatively small sizes – an adaptive response to environmental adversity. While small individuals may have lower reproductive output than large individuals, all plants should maximize their reproductive output and relative allocation to reproduction may be constant across sizes. Thus, where individual plants within a population initiate reproduction at different sizes, no significant reproductive allometry is an appropriate null expectation. Reproductive allometry occurs in plant populations where initiating reproduction at small sizes yields relatively high or low reproductive size at final development. Both of these outcomes are common in plant populations. Our interpretation of reproductive allometry combines previous adaptive and developmental constraint interpretations, and is the first to successfully explain the range of relationships in plant populations where relative allocation has been observed to increase, decrease or remain constant will increasing plant size.  相似文献   

17.
Conservation of genetic diversity, one of the three main forms of biodiversity, is a fundamental concern in conservation biology as it provides the raw material for evolutionary change and thus the potential to adapt to changing environments. By means of meta‐analyses, we tested the generality of the hypotheses that habitat fragmentation affects genetic diversity of plant populations and that certain life history and ecological traits of plants can determine differential susceptibility to genetic erosion in fragmented habitats. Additionally, we assessed whether certain methodological approaches used by authors influence the ability to detect fragmentation effects on plant genetic diversity. We found overall large and negative effects of fragmentation on genetic diversity and outcrossing rates but no effects on inbreeding coefficients. Significant increases in inbreeding coefficient in fragmented habitats were only observed in studies analyzing progenies. The mating system and the rarity status of plants explained the highest proportion of variation in the effect sizes among species. The age of the fragment was also decisive in explaining variability among effect sizes: the larger the number of generations elapsed in fragmentation conditions, the larger the negative magnitude of effect sizes on heterozygosity. Our results also suggest that fragmentation is shifting mating patterns towards increased selfing. We conclude that current conservation efforts in fragmented habitats should be focused on common or recently rare species and mainly outcrossing species and outline important issues that need to be addressed in future research on this area.  相似文献   

18.
Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the demethylating agent 5-azacytidine and examined the consequences of this treatment for plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced the growth and fitness of plants and delayed their flowering, but the degree of this response varied significantly among genotypes. Differences in genotypes’ responses to demethylation were only weakly related to their genetic relatedness, which is consistent with the idea that natural epigenetic variation is independent of genetic variation. Demethylation also altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation observed among plant individuals and genotype means. We have demonstrated that epigenetic variation can have a dramatic impact on ecologically important plant traits and their variability, as well as on the fitness of plants and their ecological interactions. Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant populations.  相似文献   

19.
Aims In perennial species, the allocation of resources to reproduction results in a reduction of allocation to vegetative growth and, therefore, impacts future reproductive success. As a consequence, variation in this trade-off is among the most important driving forces in the life-history evolution of perennial plants and can lead to locally adapted genotypes. In addition to genetic variation, phenotypic plasticity might also contribute to local adaptation of plants to local conditions by mediating changes in reproductive allocation. Knowledge on the importance of genetic and environmental effects on the trade-off between reproduction and vegetative growth is therefore essential to understand how plants may respond to environmental changes.Methods We conducted a transplant experiment along an altitudinal gradient from 425 to 1?921 m in the front range of the Western Alps of Switzerland to assess the influence of both altitudinal origin of populations and altitude of growing site on growth, reproductive investment and local adaptation in Poa alpina .Important findings In our study, the investment in reproduction increased with plant size. Plant growth and the relative importance of reproductive investment decreased in populations originating from higher altitudes compared to populations originating from lower altitudes. The changes in reproductive investment were mainly explained by differences in plant size. In contrast to genetic effects, phenotypic plasticity of all traits measured was low and not related to altitude. As a result, the population from the lowest altitude of origin performed best at all sites. Our results indicate that in P. alpina genetic differences in growth and reproductive investment are related to local conditions affecting growth, i.e. interspecific competition and soil moisture content.  相似文献   

20.
Plant invasions often involve rapid evolutionary change. Founder effects, hybridization, and adaptation to novel environments cause genetic differentiation between native and introduced populations and may contribute to the success of invaders. An influential idea in this context has been the Evolution of Increased Competitive Ability (EICA) hypothesis. It proposes that after enemy release plants rapidly evolve to be less defended but more competitive, thereby increasing plant vigour in introduced populations. To detect evolutionary change in invaders, comparative studies of native versus introduced populations are needed. Here, we review the current empirical evidence from: (1) comparisons of phenotypic variation in natural populations; (2) comparisons of molecular variation with neutral genetic markers; (3) comparisons of quantitative genetic variation in a common environment; and (4) comparisons of phenotypic plasticity across different environments. Field data suggest that increased vigour and reduced herbivory are common in introduced plant populations. In molecular studies, the genetic diversity of introduced populations was not consistently different from that of native populations. Multiple introductions of invasive plants appear to be the rule rather than the exception. In tests of the EICA hypothesis in a common environment, several found increased growth or decreased resistance in introduced populations. However, few provided a full test of the EICA hypothesis by addressing growth and defence in the same species. Overall, there is reasonable empirical evidence to suggest that genetic differentiation through rapid evolutionary change is important in plant invasions. We discuss conceptual and methodological issues associated with cross-continental comparisons and make recommendations for future research. When testing for EICA, greater emphasis should be put on competitive ability and plant tolerance. Moreover, it is important to address evolutionary change in characteristics other than defence and growth that could play a role in plant invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号