首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ultrastructural investigation of the root cells ofAllium sativum L. exposed to three different concentrations of Cd (100 (AM, 1 μM and 10 mM) for 9 days was carried out. The results showed that Cd induced several significant ultrastructural changes — high vacuolization in cytoplasm, deposition of electron-dense material in vacuoles and nucleoli and increment of disintegrated organelles. Data from electron energy loss spectroscopy (EELS) revealed that Cd was localized in the electron-dense precipitates in the root cells treated with 10 mM Cd. High amounts of Cd were mainly accumulated in the vacuoles and nucleoli of cortical cells in differentiating and mature root tissues. The mechanisms of detoxification and tolerance of Cd are briefly explained.  相似文献   

2.
The ultrastructural investigation of the root cells of Allium cepa L. exposed to two different concentrations of chromium + nickel (Cr+Ni) (10 micromol/L and 100 micromol/L) revealed that toxic symptoms were induced by increasing heavy metal concentration and treatment time. Several significant ultrastructural changes were caused by 100 micromol/L Cr+Ni - deposition of electron dense material in cell walls; larger vacuolar precipitates surrounded by membranes inside vacuoles; increment of disintegrated organelles and high vacuolization in cytoplasm. The localization of the precipitates in which the metal ions were detected by electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) was investigated. Chromium and nickel were localized in the electron dense precipitates of the root cells exposed to only 100 micromol/L Cr+Ni. None were found in the root cells exposed to 10 micromol/L Cr+Ni. Higher amounts of Cr+Ni were mainly accumulated in the cell walls and vacuoles of the fourth or fifth cortical layer.  相似文献   

3.
A lead resistant fungus was isolated from the Pacific sediment. It was associated with Penicillium according to its partial sequences of 18S and ITS. The fungus could grow in the presence of 24 mM Pb(NO3)2 in a liquid medium, and no growth inhibition was observed at 4 mM and below. When growing in the presence of 4 mM Pb(NO3)2, the fungus accumulated a large amount of lead granules in the cell, as well as adsorbed on the outer layer of cell wall, as observed under a transmission electron microscope. The intracellular lead deposited either in the vicinity of the cytoplasm membrane or in the vacuoles, and also could aggregate into large particles in the cytoplasm. However, lead was not adsorbed on the thick inner wall of the fungus. Energy dispersive X-ray spectroscopy analysis showed that these granules or particles mainly consisted of lead, and other elements could hardly be detected. Selected area electron diffraction analysis showed that there were regular crystalline lattices in the lead precipitates, indicating that they were actually in the form of crystals to some extent. Therefore, both intracellular bioaccumulation and extracellular biosorption had contributed to the high resistance of this fungus to lead. These results suggest that this fungus can be used in biotreatment as a lead trapper.  相似文献   

4.
Qin Y  Yang J  Zhao J 《Protoplasma》2005,225(1-2):103-112
Summary. Potassium pyroantimonate precipitation was used to locate loosely bound calcium in rice (Oryza sativa L.) lodicules before and after anthesis, and flowering of panicles was accelerated by treatment with methyl jasmonate. From 1 day to 4 h before anthesis, the number of calcium precipitates in the cell walls and vacuole membranes decreased gradually, whereas they increased remarkably in the cytoplasm and nucleolus. At the beginning of anthesis, the number of calcium granules in lodicules reduced sharply, but there was a large accumulation of flocculent precipitates in the vacuoles. After anthesis, the flocculent precipitates decreased in number until they disappeared, whereas the granular precipitates started to accumulate once again. The rice florets treated with 2 mM methyl jasmonate were induced to open within 10–30 min and they then closed 0.5–1 h later. The nucleolus, cytoplasm, and vacuole membrane of the lodicule cells contained many calcium granules during flowering, although the cell walls lacked calcium. At 1 h after treatment, the number of calcium granules had decreased, while flocculent precipitates were regularly observed in the nondegenerated cells. At 6 h after treatment, calcium grains started to reappear in the cell walls. These changes in calcium precipitates before and after anthesis indicate that the opening and closing of florets correlates with the calcium level in lodicule cells. In addition, excised panicles, with florets judged to be nearing anthesis, were soaked in 2–200 mM EGTA solution for 2 min after treatment with 2 mM methyl jasmonate. The results indicate that EGTA had an antagonistic effect on the methyl jasmonate-induced floret opening in rice. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

5.
Stages of Isospora felis of the cat in the mesenteric lymph node of the mouse 25 days after oral inoculation with oocysts, have been described at the ultrastructural level. The organisms occurred singly within parasitophorous vacuoles in host cell cytoplasm and were sporozoite-like, having a large crystalloid body up to 5.5 mum in length posterior to the nucleus. The size and appearance of the parasitophorous vacuole varied. Some vacuoles contained numerous, small, electron dense granules about 30 nm in diameter. Because of the aggregation of granules and their arrangement within the parasitophorous vacuole, the impression was sometimes gained by light microscopy that parasites were surrounded by a sheath or cyst wall. However, a cyst wall was not present. In host cells, spherical, membrane-bound bodies with a homogeneous, electron dense core and a maximum diameter of 0.25 mum were filed along the limiting membrane of the parasitophorous vacuole. These extra-intestinal parasites were considered to be waiting stages, with a biological function similar to that of the tissue cyst stage of other general of isosporan coccidia.  相似文献   

6.
Pearl millet synergids from unpollinated pistils at 1.5–2 and 2.5–3 days postmaturity (dpm) were examined using transmission electron microscopy following antimonate fixation to precipitate loosely-bound calcium (Ca). With increasing age of synergids, the gap above filiform apparatus (FA) and the coalesced vacuoles in midchalazal core extended and merged. The FAs became compressed and precipitates along their common wall were dispersed. The matrix material in numerous small chalazal vacuoles changed from dense to flocculent. Precipitates in vacuoles appeared mainly as clumps without or with a halo in the dense matrix and mostly finely distributed in the flocculent matrix. Eventually, vacuoles became free of both matrix and precipitates. Precipitates bound to nucleus, nucleolus, and micropylar cytoplasm increased initially, but then seemed to decrease, while the nucleus became disorganized and the nucleolus disappeared. Precipitates in the embryo sac wall and nucellar cells also increased initially, but then decreased. At very late stages, egg apparatus and ES lost structural integrity and lacked precipitates. Differences in degeneration and Ca levels of sister synergids were smaller at 1.5–2 dpm than at 2.5–3 dpm. A logical and correlative scheme of degenerative events and Ca distributional changes occurring in pearl millet synergids from maturity to 2.5–3 dpm is presented. The significance of results in pollen tube/sperm cell interactions with synergids and Ca is addressed.On Specific Cooperative Agreement 58-6612-8-002 with the Department of Biochemistry, University of Georgia, Athens, GA 30602, USA  相似文献   

7.
Z. Kristóf  O. Tímár  K. Imre 《Protoplasma》1999,208(1-4):149-155
Summary Calcium distribution in ovules ofTorenia fournieri was studied by electron energy loss spectroscopy and transmission electron microscopic visualization of calcium antimonate precipitates. High calcium levels were found in the ovules ofT. fournieri. Calcium is situated mainly in extracellular regions before fertilization, including the surface of embryo sac, in the mucilage, and among the cells of the egg apparatus. Intracellular calcium was found only in the nucellar cells around the embryo sac and in the epidermis of the central axis and funiculus. After pollination, a labyrinthine structure (coralloid-like cell wall formation) develops on the micropylar surfaces of the egg apparatus that contain high levels of calcium. Calcium levels increase in the degenerating synergid after the penetration of the pollen tube. Calcium-antimonate precipitates are abundant in vacuoles of the disrupted synergid and pollen tube cytoplasm.Abbreviations EELS electron energy loss spectroscopy - EDX energy-dispersive X-ray microanalysis - LS labyrinthine structure  相似文献   

8.
L. Lange  L. W. Olson 《Protoplasma》1981,106(1-2):83-95
Summary An ultrastructural study of the development of the resting sporangium ofSynchytrium endobioticum (Schilb.) Perc. infecting potato cells is presented. The resting sporangium is found to have a single large, centrally placed nucleus with a prominent nucleolus through its entirein situ development. The cytoplasmic organization of the resting sporangium is further characterized by numerous membrane-bound lipid bodies and osmiophilic bodies. The latter have a characteristic sieve-like appearance, probably because certain storage components have been extracted during preparation for electron microscopy. Because of the similar location and appearance of these osmiophilic bodies it is suggested that they are identical to what has earlier (based on light microscopy) been described as chromatin granules; and the ultrastructural studies presented here show that nucleolar discharge which was described from light microscopic observations as leading to chromatin granules in the cytoplasm, and finally forming the nuclei of the zoospores (bally 1912,curtis 1921,percival 1910) simply does not occur.The appearance of dense fibrillar-like structures on the sporangial surface at an early stage of resting sporangium development ultrastructurally distinguishes the resting sporangium from the zoosporangium. The development of the layered portion of the thick sporangial wall is shown to be due to the fusion of vacuoles containing pre-made wall fibrils with the cell membrane. It is suggested that the inner compact wall layer which is essentially substructureless is formed by the membrane itself.The characteristic wings of the matureS. endobioticum resting sporangium originate from the potato host cell wall. Remnants of host cell organelles in the outermost layer of the resting sporangium wall show that degradation of the host cell cytoplasm contributes to wall formation of the parasite.  相似文献   

9.
Summary During imbibition ofPhoenix dactylifera embryos, all cotyledon cells show the same changes: protein and lipid bodies degrade, smooth endoplasmic reticulum (ER) increases in amount, and dictyosomes appear. At germination, the distal portion of the cotyledon expands to form the haustorium. At this time, epithelial cells have a dense cytoplasm with many extremely small vacuoles. Many ribosomes are present along with ER, dictyosomes, and mitochondria. The parenchyma cells have large vacuoles and a small amount of peripheral cytoplasm. Between 2 and 6 weeks after germination, epithelial cells still retain the dense cytoplasm and many organelles appear: glyoxysomes, large lipid bodies, amyloplasts, large osmiophilic bodies, and abundant rough and smooth ER which appear to merge into the plasmalemma. A thin electron-transparent inner wall layer with many small internal projections is added to the cell walls. Starch grains appear first in the subsurface and internal parenchyma and subsequently in the epithelium. Lipid bodies, glyoxysomes, protein, and osmiophilic bodies occur in the epithelial and subepithelial cell layers but not in the internal parenchyma. At 8 weeks after germination, the cytoplasm becomes electron transparent, vacuolation occurs, lipid bodies and osmiophilic bodies degrade, and the endomembranes disassemble. After 10 weeks, the cells are empty. These data support the hypothesis that the major functions of the haustorium are absorption and storage.  相似文献   

10.
Ultrastructural investigation of the root cells of Allium sativum L. exposed to three different concentrations of Cu (1, 10 and 100 microM) for 9 days was carried out using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The results presented here indicate that excess Cu induces ultrastructural changes such as strong vacuolization, condensed nuclear chromatin, decreased endoplasmic reticulum (ER) and ribosome and serious plasmolysis. EELS analysis indicated that electron dense granules containing Cu appeared in the cells after Cu treatment. The vacuoles of the root tip cells were the main Cu-accumulation site. Small amounts of copper were also localized to cytoplasmic vesicles or cell walls of cortical cells. The results of the present investigation have significant importance in further understanding the mechanisms of absorption, transportation and accumulation of heavy metals in plants grown in polluted soil.  相似文献   

11.
Sodium orthovanadate at 0.1-5.0 mM affected cell proliferation of Tetrahymena in a dose-dependent manner. At 1 h the cell increment was 76-12% of the control (100%), but after lag periods in 1-5 mM the growth rate remained at 76% of control in 0.1 mM vanadate and at 64-61% of control in 0.2-5.0 mM vanadate. Endocytosis was affected in both a time- and dose-dependent manner; an increasing number of cells did not form vacuoles. Cell motility increased initially in 0.1 mM vanadate but decreased later as it did in 0.5-2.0 mM vanadate where the proportion of immobile cells increased with time. Cell divisions occurred at all concentrations but macronuclear elongation was disturbed and subsequent cytokinesis resulted in daughter cells containing the entire G2 macronucleus, a large or small portion of it, or no nucleus at all. Moreover, odd cell shapes appeared with time. The size of the cell and nucleus increased but there was great variation with disturbed cytoplasm/nucleus ratios. Treated cells had dilated rough endoplasmic reticulum that included dense material, presumed to be vanadate, which was not seen in control cells. Scant amounts of dense material were found in dense granules, small vacuoles, and abundantly in contractile vacuoles. It is argued that interference with proper microtubular function is the main effect of vanadate.  相似文献   

12.
Allium cepa L. roots were exposed to 0.1 and 1.0 mM Cd for 6, 24 and 48 h and the localization of Cd in the root tissue was investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA) were performed on frozen-dried tissues of roots. No Cd was detected in the roots treated with only 0.1 mM Cd, while after exposure to higher Cd concentration (1.0 mM) Cd was observed in cell wall and in cytoplasm in the epidermis, cortex and vascular tissues in the roots.  相似文献   

13.
Previously, a stable cell suspension culture of cucumber tolerant to cadmium (Cd) was established (Gzyl and Gwóźdź, Plant Cell Tissue Organ Cult 80:59–67, 2005). In this study, ultrastructures of Cd-tolerant and -sensitive cells were analyzed by transmission electron microscopy (TEM). Ultrastructural differences between cell lines exposed to 100 μM CdCl2 were observed both at cellular and organelle levels. Tolerant cells exposed to Cd exhibited well-preserved cellular structures in comparison with sensitive cells. Increased numbers of osmiophilic globules in the cytoplasm and nucleolus-associated bodies as well as electron dense material in vacuoles were observed in cadmium tolerant cells. In contrast, ultrastructure of sensitive cells following exposure to Cd exhibited distinct disturbances including vacuolation, disintegration of cytoplasm, and structural changes in both mitochondria and endoplasmic reticulum. TEM observations confirmed the adaptation of tolerant cells to Cd.  相似文献   

14.
In winter, dormant cambial cells contain many small vacuoles interspersed throughout the cytoplasm. This differs dramatically from actively growing cambial cells whose structure is dominated by large central vacuoles. Structure reported in studies using conventional chemical fixation and transmission electron microscopy (TEM) conflicts with that described earlier for live cambial cells using light microscopy. In this study, cryofixation (high-pressure freezing/freeze substitution) was used to preserve dormant Pinus contorta fusiform cambial cells, revealing structure more consistent with that in early micrographs of live cambial cells. At the ultrastructural level, the plasmalemma was consistently smooth and tightly associated with the cell wall, contrary to the highly in-folded plasmalemma seen in chemically fixed cambial cells. In addition, both TEM and live-cell confocal microscopy demonstrated that, in some places, dormant cells were partitioned into more numerous, smaller vacuoles than were observed after chemical fixation. Populations of different vacuoles were apparent based on size, shape and membrane staining. Larger vacuoles had prominent tonoplasts and were often present as axially elongated, interconnecting networks with associated microfilament bundles. Endoplasmic reticulum fragmented during rest into numerous vesicular structures similar to small vacuoles, then with the transition to quiescence reformed into the smooth cisternal form.  相似文献   

15.
The fine structure of blood cells in the ascidian Perophora viridis   总被引:1,自引:0,他引:1  
The fine structure of each of the blood cell types of Perophora viridis has been characterized and strong evidence for localization of vanadium in two of these types is given. There are eight cell types; phagocytes which may contain completely engulfed cells, lymphocytes with a prominant nucleolus and scanty cytoplasm packed with clustered ribosomes, and six other cell types each with distinctive granules. Morula cells contain a central nucleus and cytoplasm filled by wedged bodies, about five of which are seen in section. These bodies contain regularly spaced electron dense foci. Green cells have the same organization but contain bodies which are electron dense throughout. Granular amoebocytes contain many smaller lightly staining oval bodies and much glycogen. Another cell type (probably orange cells of light microscopy) contains numerous granular rounded bodies. Compartment cells have vacuoles containing electron dense particles and signet ring cells have usually one large vacuole which is electron dense lined and may contain electron dense particles. Developmental stages of these cell types show involvement of endoplasmic reticulum and Golgi bodies in granule formation. After glutaraldehyde fixation alone the only extremely electron dense components are particles in the compartment cells and signet ring cells implicating these as sites of vanadium localization, although not excluding other cell types.  相似文献   

16.
Mated male Argas persicus were dissected 1 and 2 weeks after feeding on untreated and ivermectin (IVM)-treated pigeons. One week after feeding, testes of untreated ticks were filled with rounded spermatids with subplasmalemmal vesicles and cytoplasmic organelles, but lacking in treated ticks. Two weeks after feeding, testes were crowded with elongated spermatozoa supported by double-walled cisternal tubes. The tubes consisted of two opposite walls, each with outer-fringed processes and inner elongated cisternae. Both were supported with electron dense striated plates in the middle of the spermatozoon. Internally, the cisternal tubes contained mitochondria and vacuoles. The nuclei were elongated dense masses between the tubes and the cell membranes. Subcutaneous inoculation of IVM at the dose 400 μg/kg pigeon resulted in extensive alterations in the testis of A. persicus. IVM prevented the development of new spermatids. There was a break down of cell membranes and cytoplasmic organelles of spermatozoa. Multivesicular bodies and numerous vacuoles were noticed in their cytoplasm. Double membranes of elongated cisternae and striation of electron dense plates became indistinct. IVM caused granulation and vacuolization of the nucleus as well as injury of mitochondrial cristae. The results suggest that IVM may bind to the neurotransmitter or the hormone involved in the process of sperm development or may be toxic to the germinal cells of A. persicus testis.  相似文献   

17.
The unusual perforations in the leaf blades of Monstera obliqua (Araceae) arise through programmed cell death early in leaf development. At each perforation site, a discrete subpopulation of cells undergoes programmed cell death simultaneously, while neighboring protoderm and ground meristem cells are unaffected. Nuclei of cells within the perforation site become terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, indicating that DNA cleavage is an early event. Gel electrophoresis indicates that DNA cleavage is random and does not result in bands that represent multiples of internucleosomal units. Ultrastructural analysis of cells at the same stage reveals misshapen, densely stained nuclei with condensed chromatin, disrupted vacuoles, and condensed cytoplasm. Cell walls within the perforation site remain intact, although a small disk of dying tissue becomes detached from neighboring healthy tissues as the leaf expands and stretches the minute perforation. Exposed ground meristem cells at the rim of the perforation differentiate as epidermal cells. The cell biology of perforation formation in Monstera resembles that in the aquatic plant Aponogeton madagascariensis (Aponogetonaceae; Gunawardena et al. 2004), but the absence of cell wall degradation and the simultaneous execution of programmed cell death throughout the perforation site reflect the convergent evolution of this distinct mode of leaf morphogenesis in these distantly related plants.  相似文献   

18.
Chromium pollution of freshwater is hazardous for humans and other organisms, and places a limitation on the use of polluted water sources. Phytoremediation, the use of plants to remove pollutants from the environment, is a cost-effective, environmentally friendly approach for water decontamination. To improve the efficiency of the process, it is essential to increase the current knowledge about Cr accumulation in macrophytes. Plants of Iris pseudacorus L. were treated with Cr(III) at 0.75 mM for 5 weeks to investigate Cr localization by means of transmission electron microscopy and energy dispersive X-ray analysis. Chromium induced severe ultrastructural alterations in the rhizodermis (cell wall disorganisation, thickening, plasmolysis, and electron-dense inclusions) and rhizome parenchyma (reduced cell size, cell wall detachment, vacuolation, and opaque granules). The highest Cr contents were found in the cell walls of the cortex in the roots and in the cytoplasm and intercellular spaces of the rhizome. The Cr concentration in root tissues was in the order cortex >rhizodermis >stele, whereas in the rhizome, Cr was evenly distributed. It is proposed that root and rhizome have distinct functions in the response of I. pseudacorus to Cr. The rhizodermis limits Cr uptake by means of Si deposition and cell wall thickening. The rhizome cortex generates vacuoles and granules where Cr co-occurs with S, indicating Cr sequestration by metal-binding proteins.  相似文献   

19.
以马铃薯晚疫病水平抗性品种LBr-12和感病品种费乌瑞它为材料,采用普通光学和电子显微镜技术,系统研究了马铃薯与晚疫病菌(致病疫霉)互作的组织细胞学反应特征。观察结果显示:(1)接种后,水平抗性材料LBr-12出现过敏反应,病菌被限制在侵染点的几个细胞中,菌丝产生较少的分支和吸器。(2)感病品种费乌瑞它被侵染细胞呈蔓延趋势,菌丝产生较多的分支和吸器。(3)电镜观察发现,抗病品种上病菌的胞间菌丝、吸器母细胞、吸器在细胞和亚细胞水平均发生了一系列异常变化,包括原生质的电子致密度加深、液泡增多变大、菌丝细胞壁不规则增厚、细胞器排列紊乱及解体、吸器母细胞及吸器形态异常、病菌最终畸形坏死,同时发现抗病品种受病菌侵染时可迅速产生结构防卫反应,形成的细胞壁沉积物使胞壁极度增厚或细胞膜上产生乳突状结构。  相似文献   

20.
采用焦锑酸钾沉淀钙离子技术,对洋葱(Alliumcepa)花药发育中Ca^2+分布进行了研究。在小孢子母细胞时期,小孢子母细胞中的钙沉淀颗粒很少,但绒毡层细胞的内切向壁已出现明显的钙沉淀颗粒。在四分体时期,四分体小孢子的胼胝质壁中出现较多的钙沉淀颗粒;绒毡层细胞内切向壁的钙沉淀颗粒消失,而在外切向壁和径向壁部位的钙沉淀颗粒增加。在小孢子早期,小孢子中也出现了钙沉淀颗粒,而绒毡层细胞内切向壁表面出现了很多絮状物,其上附有细小钙沉淀颗粒。到小孢子晚期,小孢子中出现一些小液泡,细胞质中的钙沉淀颗粒有所下降。此时绒毡层细胞已明显退化,但在绒毡层膜上仍有一些乌氏体和钙沉淀颗粒。在二胞花粉早期,营养细胞中的液泡收缩、消失,细胞质中又出现了较多的钙沉淀颗粒,在质体和其内部的淀粉粒表面上附有较多的钙沉淀颗粒。到二胞花粉晚期,花粉中的钙沉淀颗粒已明显下降,仅在花粉外壁中还有一地钙沉淀颗粒.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号