首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In normal fibroblasts stimulated by platelet derived growth factor (PDGF), PDGF receptors are transiently phosphorylated on tyrosine and represent the major phosphotyrosine containing protein. The phosphate of the phosphotyrosine groups turns over rapidly, and extensive evidence indicates a dynamic balance between phosphorylation and dephosphorylation reactions. Thus, the effect of an inhibitor of phosphatases, orthovanadate, on the pattern of the tyrosine phosphorylations induced by PDGF in Swiss 3T3 fibroblasts was investigated. Western blot analysis with antibodies against phosphotyrosine indicated that whereas in unstimulated cells no phosphotyrosine containing proteins were detected, treatment of cells with orthovanadate alone elicited the slow phosphorylation of several proteins including a 170 kDa component that was recognized to be the phosphorylated PDGF receptor. Addition of PDGF to cells shortly pretreated with vanadate highly increased the intensity of the 170 kDa band corresponding to the phosphorylated receptor and caused its stabilization during time. In addition, the phosphorylation on tyrosine of other proteins (molecular mass 116, 80, 73, 60, 50 and 39 kDa) was also induced. Both the receptor and the other tyrosine phosphorylated proteins appeared to be associated with the detergent insoluble matrix.  相似文献   

2.
A monoclonal antibody that can immunoprecipitate proteins containing phosphotyrosine has been isolated and characterized. To identify proteins that can act as substrates for tyrosine kinases in intact cells, extracts of phosphate-labeled NIH cells that had been treated with the phosphotyrosyl phosphatase inhibitor, vanadate, were precipitated with the antibody, and the immunoprecipitates were analyzed by two-dimensional gel electrophoresis. Numerous proteins were specifically precipitated from vanadate-treated NIH 3T3 cells by the antibody. The high level of phosphotyrosine detected in vanadate-treated cells is presumably primarily due to phosphatase inhibition, but approx. 2-fold increased tyrosine kinase activities were also detected in extracts of the cells after treatment with vanadate. The enhanced tyrosine kinase activity may contribute to the generation of the transformed phenotype seen in response to treatment with vanadate.  相似文献   

3.
The possible role of tyrosine phosphorylation in the activation of granulocytic HL60 cells was examined using vanadate, a phosphotyrosine phosphatase inhibitor. Treatment of permeabilized cells with micromolar concentrations of vanadate resulted in a substantial accumulation of tyrosine-phosphorylated proteins, detected by immunoblotting. At comparable concentrations, vanadate was also found to elicit an NADPH-dependent burst of oxygen utilization. Actin assembly, studied using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin, was similarly stimulated by vanadate, though considerably higher concentrations were required to observe this effect. In contrast with these responses, the secretion of lysozyme was not stimulated by vanadate, nor did vanadate affect calcium-induced secretion. Therefore, accumulation of tyrosine-phosphorylated proteins is associated with stimulation of some, but not all, of the responses characteristic of granulocytic cell activation. This indicates that the effects of vanadate are selective and suggests divergence of the signalling pathways leading to the individual effectors.  相似文献   

4.
Rous sarcoma virus-transformed BHK cells (RSV/B4-BHK) adhere to a fibronectin-coated substratum primarily at specific dot-shaped sites. Such sites contain actin and vinculin and represent close contacts with the substratum as revealed by interference reflection microscopy. Only a few adhesion plaques and actin filament bundles can be detected in these cells as compared to untransformed parental fibroblasts. In thin sections examined with transmission electron microscopy (TEM) these adhesion sites correspond to short protrusions of the ventral cell surface that contact the substratum at their apical portion. These structures, which may represent cellular feet, are therefore called podosomes. By screening a number of different transformed fibroblasts plated on a fibronectin-coated substratum we find that podosomes are common to mammalian and avian cell lines transformed either by Rous sarcoma virus (RSV) or by Fujinami avian sarcoma virus (FSV), whose oncogenes encode specific tyrosine kinases. Using antibodies reacting with phosphotyrosine in immunofluorescence experiments, we show that phosphotyrosine-containing molecules are concentrated in podosomes. Podosomes are not detected in fibroblasts transformed by other retroviruses (Snyder-Theilen sarcoma virus, Abelson leukemia virus and Kirsten sarcoma virus) or by DNA tumor viruses (polyoma, SV40), indicating that podosome-mediated adhesion in transformed fibroblasts is related to the peculiar properties of some oncoproteins and possibly to their tropism for adhesion systems. Podosomes and adhesion plaques, although similar in cytoskeletal protein composition, have different mechanisms and kinetics of formation. Assembly of podosomes, in fact (i) does not require fetal calf serum (FCS) in the adhesion medium, that is necessary for the organization of adhesion plaques; (ii) does not require protein synthesis; and (iii) is insensitive to the ionophore monensin, that prevents adhesion plaque formation. Moreover, during attachment to fibronectin-coated dishes, podosomes appear in the initial phase (60 min) of attachment, while adhesion plaques require a minimum of 180 min. In conclusion podosomes of RSV- and FSV-transformed fibroblasts represent a phenotypic variant of adhesion structures.  相似文献   

5.
《The Journal of cell biology》1994,126(5):1299-1309
We describe a novel approach to study tyrosine-phosphorylated (PY) integrins in cells transformed by virally encoded tyrosine kinases. We have synthesized a peptide (PY beta 1 peptide) that represents a portion of the cytoplasmic domain of the beta 1 integrin subunit and is phosphorylated on the tyrosine residue known to be the target of oncogenic tyrosine kinases. Antibodies prepared against the PY beta 1 peptide, after removal of cross-reacting antibodies by absorption and affinity purification, recognized the PY beta 1 peptide and the tyrosine-phosphorylated form of the intact beta 1 subunit, but did not bind the nonphosphorylated beta 1 peptide, the nonphosphorylated beta 1 subunit or other unrelated tyrosine-phosphorylated proteins. The anti- PY beta 1 antibodies labeled the podosomes of Rous sarcoma virus- transformed fibroblasts, but did not detectably stain nontransformed fibroblasts. The localization of the tyrosine phosphorylated beta 1 subunits appeared distinct from that of the beta 1 subunit. Adhesion plaques were stained by the anti-beta 1 subunit antibodies in Rous sarcoma virus-transformed fibroblasts plated on fibronectin, whereas neither podosomes nor adhesion plaques were labeled on vitronectin or on uncoated plates. Anti-phosphotyrosine antibodies labeled podosomes, adhesion plaques and cell-cell boundaries regardless of the substratum. One of the SH2 domains of the p85 subunit of phosphatidylinositol-3- kinase bound to the PY beta 1 peptide, but not to the non- phosphorylated beta 1 cytoplasmic peptide. Other SH2 domains did not bind to the PY beta 1 peptide. These results show that the phosphorylated form of the beta 1 integrin subunit is detected in a different subcellular localization than the nonphosphorylated form and suggest that the phosphorylation on tyrosine of the beta 1 subunit cytoplasmic domain may affect cellular signaling pathways.  相似文献   

6.
Transformed epithelial cells often are characterized by a fibroblastic or mesenchymal morphology. These cells exhibit altered cell-cell and cell-substrate interactions. Here we have identified changes in the adhesions and cytoskeletal interactions of transformed epithelial cells that contribute to their altered morphology. Using MCF-10A human breast epithelial cells as a model system, we have found that transformation by an activated form of ras is characterized by less developed adherens- type junctions between cells but increased focal adhesions. Contributing to the modified adherens junctions of the transformed cells are decreased interactions among beta-catenin, E-cadherin, and the actin cytoskeleton. The ras-transformed cells reveal elevated phosphotyrosine in many proteins, including beta-catenin and p120 Cas. Whereas in the normal cells beta-catenin is found in association with E- cadherin, p120 Cas is not. In the ras-transformed cells, the situation is reversed; tyrosine-phosphorylated p120 Cas, but not tyrosine- phosphorylated beta-catenin, now is detected in E-cadherin complexes. The tyrosine-phosphorylated beta-catenin also shows increased detergent solubility, suggesting a decreased association with the actin cytoskeleton. p120 Cas, whether tyrosine phosphorylated or not, partitions into the detergent soluble fraction, suggesting that it is not tightly bound to the actin cytoskeleton in either the normal or ras- transformed cells. Inhibitors of tyrosine kinases decrease the level of tyrosine phosphorylation and restore a normal epithelial morphology to the ras-transformed cells. In particular, decreased tyrosine phosphorylation of beta-catenin is accompanied by increased interaction with both E-cadherin and the detergent insoluble cytoskeletal fraction. These results suggest that elevated tyrosine phosphorylation of proteins such as beta-catenin and p120 Cas contribute to the altered adherens junctions of ras-transformed epithelia.  相似文献   

7.
Brassinosteroid-induced phosphorylation of tyrosine residues in proteins was studied. Proteins of crude extract of pea leaves were analyzed by one- and two-dimensional electrophoresis followed by Western blotting with monoclonal antibodies PY20 to phosphotyrosine proteins. One- and two-dimensional electrophoresis revealed 7 and 13 tyrosine-phosphorylated proteins, respectively. Brassinolide increased the phosphorylation level of most of these proteins. With inhibitors of tyrosine protein phosphatases, such as phenylarsine oxide and orthovanadate, the level of tyrosine phosphorylation of these proteins increased.  相似文献   

8.
Cells transformed with the middle tumor antigen (mT) of polyomavirus were treated with sodium orthovanadate (Na3VO4), an inhibitor of phosphotyrosine phosphatases, to enhance for the detection of cellular proteins which are phosphorylated on tyrosine. Na3VO4 treatment of mT-transformed rat F1-11 cells resulted in a 16-fold elevation in the level of phosphotyrosine associated with total cellular proteins. Parental F1-11 cells displayed only a twofold increase in phosphotyrosine following Na3VO4 treatment. The abundance of phosphotyrosine in Na3VO4-treated mT-transformed F1-11 cells was twofold higher than in untreated Rous sarcoma virus (RSV)-transformed F1-11 cells and 3.5-fold lower than in Na3VO4-treated RSV-transformed F1-11 cells. Tyrosine phosphorylation of many cellular proteins, including p36, the major substrate of the RSV pp60v-src protein, was detected in Na3VO4-treated mT-transformed F1-11 cells at levels comparable to those observed in RSV-transformed cells. Some of the major protein species recognized by antiphosphotyrosine antibodies in Na3VO4-treated mT-transformed cells displayed electrophoretic mobilities similar to those detected in RSV-transformed F1-11 cells. Tyrosine phosphorylation of p36 was also detected in fibroblasts infected with polyomavirus. There was no detectable difference in the kinase activity of pp60c-src:mT extracted from untreated and Na3VO4-treated mT-transformed cells; however, Na3VO4 treatment of F1-11 and mT-transformed F1-11 cells was shown to inhibit the activity of phosphotyrosine phosphatases in a crude assay of total cellular activity with pp60v-src as the substrate. Thus, Na3VO4 treatment may allow the detection of phosphotyrosine-containing proteins in mT-transformed cells by preventing the turnover of phosphate on substrates phosphorylated by activated cellular protein-tyrosine kinases associated with mT. These results suggest that tyrosine phosphorylation of cellular proteins may be involved in the events that are responsible for mT-induced cellular transformation.  相似文献   

9.
 Vanadate is a potent reversible inhibitor of protein tyrosine phosphatases (PTP) in vitro. Vanadate has been shown to increase the phosphotyrosine levels in some cell types whereas in others, like the Jurkat T-lymphoma, vanadate has no effect. The reason for the apparent lack of effect of vanadate in Jurkat cells was investigated in this study. Alteration of the redox state of these cells by reducing the glutathione level with 1-chloro-2,4-dinitrobenzene (DnpCl) had no effect on phosphotyrosine levels. However, the cells became sensitive to vanadate, as measured by an increase in phosphotyrosine levels on a wide range of proteins including the MAP kinases. The increase in phosphotyrosine levels most likely results from inhibition of cellular PTP and suggests that protein tyrosine kinases are constitutively active in cells, resulting in a dynamic phosphorylation-dephosphorylation cycle. The mode of inhibition of PTP by vanadate was investigated by measuring the PTP activity of Jurkat membranes isolated after treatment of cells with vanadate and DnpCl. In contrast to the reversible inhibition of PTP in vitro, the effect of vanadate in the presence of DnpCl was irreversible, raising the possibility that it is peroxovanadate formed in situ that is responsible for the inhibition of PTP in intact cells. Received: 4 December 1998 · Accepted: 22 March 1999  相似文献   

10.
Human T lymphocytes are activated to proliferate after triggering the T Cell Antigen Receptor Complex. CD3-Ti, with either antigen, mitogenic lectins or monoclonal antibodies against its different subunits. Stimulation of Jurkat leukemic human T cells with anti-CD3 or anti-Ti monoclonal antibodies was found to induce, within 1 min, an increase in the phosphorylation of a set of cellular proteins that can be precipitated with anti-phosphotyrosine antibodies. Seven phosphotyrosine-containing proteins were separated with respective mol. wt of 21, 25, 38, 55, 70, 80 and 110 kDa, among which the 38 kDa species is predominant. Moreover, incubation of Jurkat T cells with sodium orthovanadate, a potent inhibitor of phosphotyrosine protein-phosphatases, was found to potentiate the effects of anti-CD3 mAb on tyrosine phosphorylation. In addition vanadate also induced IL-2 secretion in Jurkat cells when associated with the phorbol ester TPA, further demonstrating the importance of these phosphorylation reactions in the process of T cell activation. Our results therefore allow us to identify several protein substrates of a tyrosine kinase activity, whose stimulation appears to be an early event in human T cell activation through the antigen receptor pathway.  相似文献   

11.
Coordinated migration of endothelial cells models the remodeling of existing endothelia as well as angiogenesis and vasculogenesis. Platelet-endothelial cell adhesion molecule-1, PECAM-1, a transmembrane endothelial adhesion protein, binds and activates the tyrosine phosphatase SHP-2 via phosphotyrosines 663 and 686. PECAM-1 phosphorylation and recruitment of SHP-2 are regulated by cell-cell and cell-substrate adhesion. We found that PECAM-1 is dephosphorylated on tyrosine 686 during endothelial migration, resulting in diffuse dispersal of PECAM-1 and SHP-2. Overexpression of native PECAM-1 slowed, and nonphosphorylatable PECAM-1 increased, endothelial migration, implying that the SHP-2-regulatory phosphotyrosines negatively regulate migration. Using differentially phosphorylated recombinant proteins we found that phosphotyrosine 686 preferentially mediates binding and 663 mediates activation of SHP-2 by PECAM-1. In PECAM-1-null endothelial cells, SHP-2 bound and dephosphorylated an alternative set of phosphoproteins and its distribution to the cytoskeletal fraction was significantly decreased. Tyrosine phosphorylation of beta-catenin and focal adhesion kinase was increased in endothelial cells overexpressing nonphosphorylatable PECAM-1. Thus homophilically engaged, tyrosine-phosphorylated PECAM-1 locally activates SHP-2 at cell-cell junctions; with disruption of the endothelial monolayer, selective dephosphorylation of PECAM-1 leads to redistribution of SHP-2 and pro-migratory changes in phosphorylation of cytoskeletal and focal contact components.  相似文献   

12.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.  相似文献   

13.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

14.
The cellular distribution of beta-catenin was determined by western blotting and laser confocal scanning microscopy in both control and pharmacologically-manipulated mouse preimplantation embryos. Most of the stored maternal beta-catenin is Triton X-100-extractable and distributed throughout the cytoplasm. In 2-cell stage embryos, the remaining molecules are concentrated in regions of cell contact and, to a lesser extent, at non apposed surfaces. Association of beta-catenin with the cortex of non apposed membranes decreases as cleavage proceeds, and is lost at compaction. In contrast to the rapid cross-linking of cell surfaces induced by wheat germ agglutinin, the diacylglyceride-induced compaction-like adhesion of 2- and 4-cell embryos correlates with complete restriction of beta-catenin to the apposing membranes. On the contrary, tyrphostin B46, a specific protein tyrosine kinase inhibitor, fails to induce both premature beta-catenin relocalisation and compaction. In addition, we show that orthovanadate induces a dramatic increase in the level of phosphotyrosine labelling of cell-cell junctions in compacted 8-cell stage embryos without inducing their decompaction. However, most of these orthovanadate tyrosine-phosphorylated proteins are detergent-soluble, while beta-catenin restricted to the apposing membranes is not. In conclusion, our results confirm that diacylglycerol-dependent kinases upregulate both beta-catenin redistribution and compaction, and indicate that neither tyrosine kinases, nor tyrosine phosphatases are critical for the proper onset of compaction which seems, in addition, not causally linked to tyrosine dephosphorylation of beta-catenin.  相似文献   

15.
Antibodies against phosphotyrosine are a powerful tool with which to identify proteins phosphorylated on tyrosine residues, such as viral oncogene-encoded transforming proteins and their cellular protein substrates. Probed on human leukemia cell lines, phosphotyrosine antibodies recognized a 210,000-molecular-weight protein (p210) in K562 cells, a cell line derived from a Philadelphia (Ph)'-positive chronic myelogenous leukemia (CML), but recognized no protein in control Ph'-negative non-CML leukemia cells. The p210 protein was also recognized by antisera against v-abl-encoded polypeptides and displayed kinase activity, phosphorylating itself on tyrosine, in an immunocomplex kinase assay. These data are consistent with reported findings of the expression of a recombined bcr-abl gene in Ph'-positive CML cells, leading to the synthesis of an altered p210c-abl protein endowed with tyrosine kinase activity. Phosphotyrosine antibodies also detected the expression of the p210c-abl protein in fresh bone marrow cells harvested from CML patients in blast crisis. Besides the p210c-abl protein kinase, phosphotyrosine antibodies recognized other proteins with molecular weights of 110,000, 68,000, and 36,000 (p110, p68, and p36) in K562 cells. When [gamma-32P]ATP was added to nonionic detergent-extracted cells, these proteins became phosphorylated on tyrosine, as confirmed by phosphoamino acid analysis. A comparison with fibroblasts transformed by the v-abl, v-src, and v-fps oncogenes suggested the identity of the p36 protein with the common 36-kilodalton protein substrate of viral oncogene-encoded tyrosine kinases. Enhanced tyrosine phosphorylation of cellular proteins is thus a feature shared by cells transformed by v-abl and cells expressing a rearranged bcr-abl gene.  相似文献   

16.
Normal rat kidney [NRK] cells grown in the presence of epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) have a normal phenotype and undergo density-dependent growth inhibition, whereas in the presence of multiple growth factors, density arrest is lost and the cells become phenotypically transformed. We studied the influence of the protein tyrosine phosphatease (PTPase) inhibitor sodium orthovanadate on the mitogenic stimulation of NRK cells by growth factors and on transformation-linked properties as loss of density-dependent growth inhibition and anchorage-independent growth. The fraction of cells in serum-deprived monolayer cultures that is induced to proliferate upon mitogenic stimulation by EGF or PDGF is only slightly enhanced upon addition of low concentrations (25–50 μM) of vanadate. Addition of vanadate per se induces proliferation of only a very limited amount of cells, but results in a shift of the dose-response curves for other growth factors to lower concentrations. Vanadate added in combination with EGF or PDGF is able to mimic the effect of transforming growth factor β (TGFβ) in inducing phenotypic transformation. In monolayer cultures density-dependent growth inhibition is lost and anchorage-independent proliferation is observed on dishes coated with poly(2-hydroxy-ethyl methacrylate) (polyHEMA). The extent of these changes is similar to that induced by TGFβ. However, the morphology of the obtained colonies in polyHEMA-coated dishes is quite different. Cells transformed by TGFβ in the presence of EGF form rather amorphous colonies, whereas in the presence of orthovanadate colonies are formed that tend to fall apart in loose cells. The effect of vanadate on cell transformation is dependent on the growth factor conditions in a bimodal way. When a suboptimal dose of growth factor(s) is used, 25 μM vanadate is very effective in preventing density-induced growth inhibition and stimulating anchorage-independent proliferation. However, the same concentration of vandate is inhibitory when cells are maximally stimulated and antagonizes the transforming effect of TGFβ added in combination with other growth factors. It is hypothesized that vanadate acts on a set of different protein tyrosine phosphatases. Some of these are positive and others negative regulators of growth. © 1993 Wiley-Liss, Inc.  相似文献   

17.
We have sought to identify candidate substrates for src family protein-tyrosine kinases potentially important for transformation. Transfected NIH/3T3 cells, each overexpressing a normal or activated version of the fyn, fgr, or src translational product, were examined using antibody to phosphotyrosine as a probe. Expression of each cDNA induced similar but distinct patterns of tyrosine phosphorylated cellular proteins, with the extent of phosphorylation being greatest in cells expressing an activated kinase. A 70-kDa tyrosine-phosphorylated protein was found to associate with the activated fyn gene product. A protein designated p130, tyrosine phosphorylated in vitro, and in vivo, was found to physically associate with the activated product of each src family gene examined. Physical interaction of three different highly transforming tyrosine kinases with a common cellular protein suggests that p130 may play an important role in transformation induced by src family kinases.  相似文献   

18.
We have used quail skeletal myotubes expressing a temperature-sensitive allele of the v-src oncogene to address the issue of the homeostasis of sarcomeric myofibrils in differentiated muscle cells. Reactivation of the v-Src tyrosine kinase by shifting the cultures to the permissive temperature leads within minutes to the formation of F-actin-containing bodies (ABs), that originate in the ventral region of the myotubes and increase in number concomitantly with the dismantling of the I-Z-I complex of the sarcomeres. This process is detailed by confocal and electron microscopy. Indirect immunofluorescence reveals that ABs contain muscle-specific protein isoforms associated with the I-Z-I complexes and vinculin, a component of the cytoskeletal network. Anti- phosphotyrosine antibodies label proteins in ABs and Z-discs. Evidence is presented indicating that this phenomenon specifically depends on the persistent activation of v-Src, rather than on a general increase in phosphotyrosine content such as that induced by vanadate. AB formation is prevented by activation of protein kinase C by phorbol ester or by treatment with the kinase inhibitor 2-aminopurine, without any detectable effect on tyrosine phosphorylation. Taken together these findings indicate that phosphorylation of specific target proteins by v- Src, although necessary, is not sufficient per se to induce AB formation. In addition, the signal transduction cascade that culminates in MAP kinase activation and its nuclear translocation is activated both by v-Src and phorbol ester, and is relatively unaffected by 2- aminopurine. These findings imply that both phorbol esters and 2- aminopurine operate, at least in part, at the level of alternative pathways that may diverge upstream of the MAP kinase and are presumably mediating the early effects of v-Src on the differentiated phenotype.  相似文献   

19.
M P Kamps  J E Buss  B M Sefton 《Cell》1986,45(1):105-112
Mutagenesis of glycine 2 of p60src, the transforming protein of Rous sarcoma virus (RSV), yields a protein that is neither myristylated nor bound to cellular membranes. Although these mutant viruses retain full tyrosine protein kinase activity, they are transformation-defective. We examined in detail tyrosine phosphorylation of cellular polypeptides and the phenotype induced by infection with two such viruses. Infection failed to cause growth in agar, cytoskeletal reorganization, or changes in fibronectin synthesis and protease secretion. Strikingly, tyrosine phosphorylation of the known substrates of p60src was extensive, and differed from that found in wild-type transformed cells only quantitatively. There was no apparent correlation between the extent to which any of eight known protein substrates of p60src were phosphorylated and the phenotype of infected cells. We suggest that the phosphorylation of as yet unidentified proteins, which are probably found in cellular membranes, is essential for transformation by RSV.  相似文献   

20.
Transformed cells often express elevated levels of tyrosine-phosphorylated proteins. Inhibition of protein tyrosine kinases causes reversion of malignant cells to the normal phenotype. In the present study, we evaluated the possibility that the reversion of human endometrial adenocarcinoma RL95-2 cells to a stationary phenotype induced by retinoic acid was associated with inhibition of tyrosine phosphorylation of cellular proteins. We found that retinoic acid decreased the levels of tyrosine-phosphorylated proteins, as assessed by immunostaining and immunoprecipitations using specific anti-phosphotyrosine antibodies. In addition, the inhibitors of tyrosine kinases herbimycin A and tyrphostin mimicked retinoic acid, inducing F-actin reorganization and increasing the size of RL95-2 cells, as determined by measurement of cell perimeters. Because focal adhesions that connect actin filaments with the plasma membrane are major sites of tyrosine phosphorylation, we further investigated whether selected focal adhesion proteins were affected by retinoic acid. We found that retinoic acid altered the localization of focal adhesion kinase. All-trans retinoic acid was effective in reducing the levels of focal adhesion kinase and paxillin protein. Thirteen-cis retinoic acid increased the levels of vinculin protein in the cytosolic fraction of cells. These changes are consistent with actin reorganization and reversion toward a stationary phenotype induced by retinoic acid in endometrial adenocarcinoma RL95-2 cells. Our results indicate that the differentiating effects of retinoids on endometrial cells are associated with decreases in tyrosine phosphorylation and changes in the levels and distribution of focal adhesion proteins. These findings suggest that signaling pathways that involve tyrosine kinases are potential targets for drug design against endometrial cancer. J. Cell. Physiol. 178:320–332, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号