共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Participation of nuclear genes in chloroplast gene expression 总被引:33,自引:0,他引:33
3.
4.
5.
The chloroplast genome ofChlamydomonas reinhardtii has been transformed with a chimeric gene consisting of the chloroplastatpA promoter and the bacterial gene for aminoglycoside adenine transferase (aadA). TheatpA-aadA cassette has been placed within the chloroplast DNAEcoRI restriction enzyme fragment 14, or within the chloroplastBamH1 fragment 10. The chimeric constructs were introduced into the chloroplast by particle bombardment. Integration of the cassette into chloroplast DNA then occurred via homologous recombination of sequences flanking the cassette with their corresponding chloroplast sequences. We demonstrate that the chloroplastatpA promoter inatpA-aadA routinely recombines with its endogenous counterpart, resulting in heteroplasmic chloroplast DNA populations that may persist for many generations. The heterologous gene does not require a 3 inverted repeat sequence for its expression. TheatpA-aadA gene copy number, which is dictated here by its position in the chloroplast genome, is proportional to the steady state level ofatpA-aadA mRNA. However, neither genomic position, gene copy number, or mRNA level have a significant effect on cellular resistance to spectinomycin, nor activity of theaadA gene productin vitro. These results suggest that, in the case ofaadA, the limiting step for expression of this gene is at the translational or post-translational level. TheatpA-aadA cassette should prove a useful model for future studies on the maintenance and expression of heterologous genes inC. reinhardtii chloroplasts. 相似文献
6.
7.
《Plant science》2001,161(3):379-389
There is broad evidence that an endosymbiotic uptake of a cyanobacterial-type organism was the point of origin for the evolution of chloroplasts. During organelle evolution extensive gene transfer from the symbiont to the host genome occurred, which raises the question of how these gene products, namely proteins, which are still functional in chloroplasts, find their way back ‘home’. Nuclear-encoded proteins enter plastids via a complex import machinery that requires the coordinate interplay of a variety of soluble and membrane-bound factors on the cytosolic site as well as on the stromal side of the chloroplast envelope membranes. We define that the process called ‘import of chloroplast precursor proteins’ begins with the release of the polypeptide from the ribosomes and binding to cytosolic factors, such as a guidance complex, which accompanies (chaperones) proteins to chloroplasts. The translocation across the envelope membranes engages distinct translocation machineries at the outer and the inner envelope membranes. Additionally subsequent sorting events to different subcompartments within the plastids are operated by a number of distinct pathways, all of which seem to involve multiple subunits, which are largely of bacterial (symbiotic) origin. The evolutionary history of proteins mediating the import of chloroplast constituents across the envelope membranes seems more diverse. Since cyanobacteria lack a protein import pathway, it is not surprising that only a few subunits of the chloroplast translocon seem to be of symbiotic origin while others seem to be eukaryotic additions. 相似文献
8.
9.
Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription 下载免费PDF全文
Nakaya HI Amaral PP Louro R Lopes A Fachel AA Moreira YB El-Jundi TA da Silva AM Reis EM Verjovski-Almeida S 《Genome biology》2007,8(3):R43
10.
11.
12.
13.
14.
Interspecific variation in chloroplast low molecular weight (cLMW) HSP (heat shock protein) expression was examined with respect to phylogeny, species specific leaf area, chlorophyll fluorescence, and mean environmental conditions within species ranges. Eight species of Ceanothus (Rhamnaceae) were heat shocked for 4 h at several different temperatures. Leaf samples were collected immediately after the heat shock, and cLMW HSP expression was quantified using Western blots. At 45°C species from the subgenus Cerastes had significantly greater cLMW HSP expression than species from the subgenus Ceanothus. Specific leaf area was negatively correlated with cLMW HSP expression after the 45°C heat treatment. In addition, chlorophyll fluorescence (F(v)/F(m)) 1 h after the heat shocks was positively correlated with cLMW HSP expression. Contrary to our prediction, there was no correlation between July maximum temperature within species ranges and cLMW HSP expression. These results suggest that evolutionary differentiation in cLMW HSP expression is associated with leaf physiological parameters and related aspects of life history, yet associations between climatic conditions within species ranges and cLMW HSP expression require further study. 相似文献
15.
Hiroshi Fukayama Chisato Masumoto Yojiro Taniguchi Akiko Baba-Kasai Yuuki Katoh Hiroshi Ohkawa 《Bioscience, biotechnology, and biochemistry》2013,77(3):402-409
To verify the presence of enolase related to the chloroplastic glycolysis in rice, database search was carried out and identified seven putative enolase genes in the rice genome. Among them, OsEno1 and OsEno3 encode long proteins with N-terminal extensions. GFP protein fusions of these N-terminal extensions were both targeted to plastids of onion epidermal cell. Promoter::GUS analysis showed that OsEno3 was highly expressed in young developing leaves, but its expression was drastically decreased during leaf development and greening. On the other hand, the expression of OsEno1 was low and detected in limited portions such as leaf sheath at the tiller base. Recombinant OsEno1 protein showed enolase activity with a pH optimum at pH 8.0, whereas OsEno3 did not exhibit detectable activity. Although it remains obscure if OsEno3 encodes a functional enolase in vivo, our results demonstrate that the entire glycolytic pathway does not operate in rice chloroplasts. 相似文献
16.
17.
18.
Using gene-history and expression analyses to assess the involvement of LGI genes in human disorders
Gu W Gibert Y Wirth T Elischer A Bloch W Meyer A Steinlein OK Begemann G 《Molecular biology and evolution》2005,22(11):2209-2216
Mutations in the leucine-rich, glioma-inactivated 1 gene, LGI1, cause autosomal-dominant lateral temporal lobe epilepsy via unknown mechanisms. LGI1 belongs to a subfamily of leucine-rich repeat genes comprising four members (LGI1-LGI4) in mammals. In this study, both comparative developmental as well as molecular evolutionary methods were applied to investigate the evolution of the LGI gene family and, subsequently, of the functional importance of its different gene members. Our phylogenetic studies suggest that LGI genes evolved early in the vertebrate lineage. Genetic and expression analyses of all five zebrafish lgi genes revealed duplications of lgi1 and lgi2, each resulting in two paralogous gene copies with mostly nonoverlapping expression patterns. Furthermore, all vertebrate LGI1 orthologs experience high levels of purifying selection that argue for an essential role of this gene in neural development or function. The approach of combining expression and selection data used here exemplarily demonstrates that in poorly characterized gene families a framework of evolutionary and expression analyses can identify those genes that are functionally most important and are therefore prime candidates for human disorders. 相似文献
19.
20.
割胶促进橡胶树合成天然橡胶与激活乳管细胞的茉莉酸信号途径密切相关,但茉莉酸信号途径关键环节的基因表达水平与干胶产量的相关性尚不清楚。为了找到与产量相关的分子标记,该研究采用qPCR技术,分析了割胶条件下茉莉酸信号途径关键环节的9个相关基因在5个橡胶树魏克汉种质和5个1981’IRRDB种质乳管细胞中的表达。结果表明:大多魏克汉种质的株次干胶产量显著高于1981’IRRDB种质。在9个基因中,除了HbMYC4和HbMYC5,其余7个基因在大多橡胶树魏克汉种质中的表达量均显著高于1981’IRRDB种质,尤其是HbMYC3基因表达差异性好,与干胶产量相关性高,有望作为橡胶树产量育种的一个分子标记。这对育种周期长的橡胶树产量育种具有实际应用价值。 相似文献