首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present results show that the catalytic subunit of cyclic AMP-dependent protein kinase phosphorylates the 50 kDa protein of rat liver phospholipid methyltransferase at one single site on a serine residue. Phosphorylation of this site is stimulated 2- to 3-fold by S-adenosylmethionine. S-adenosylmethionine-dependent protein phosphorylation is time- and dose-dependent and occurs at physiological concentrations. S-adenosylhomocysteine has no effect on protein phosphorylation but inhibits S-adenosylmethionine-dependent protein phosphorylation. ratios varying from 0 to 5 produce a dose-dependent stimulation of the phosphorylation of the 50 kDa protein. In conclusion, these results show, for the first time, that the ratio can modulate phosphorylation of a specific protein.  相似文献   

2.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

3.
4.
The existence of metabolically distinct pools of S-adenosyl-L-methionine in Saccharomyces cerevisiae and isolated rat hepatocytes was investigated. Utilizing a relatively long labeling period with [methyl-14C]methionine, a metabolically ‘stable’ pool was labeled. A subsequent short labeling with [methyl-3H]methionine selectively labeled a putative metabolically ‘labile’ pool. The existence of these distinguishable pools was ascertained by following the 3H and 14C label disappearance in S-adenosyl-L-methionine during the chase-period in label-free media containing cycloleycine to prevent futher synthesis of S-adenosyl-L-methionine. In both yeast and hepatocytes, the 3H14C ratio in S-adenosyl-L-methionine decreased sharply. The individual 3H and 14C decrease in S-adenosyl-L-methionine showed t12 values of 3 and 8 min for yeast and 4 and 18 min for hepatocytes. The results strongly indicate that at least two metabolically distinct S-adenosyl-L-methionine pools actually do exist in both systems. Subcellular fractionation revealed that the ‘labile’ pool exist in the cytosol for both yeast and hepatocytes while the ‘stable’ pool exists in the vacuolar and the mitochondrial fraction for the yeast and hepatocytes respectively. The S-adenosyl-L-methionine pools were also studied in normal yeast under anaerobic chase condition and petite mutant yeast. Sharply contrasting with aerobically chased normal yeast, both showed closely parallel 3H and 14C decreases in S-adenosyl-L-methionine.  相似文献   

5.
The present results show that the catalytic subunit of cyclic AMP-dependent protein kinase phosphorylates the 50 kDa protein of rat liver phospholipid methyltransferase at one single site on a serine residue. Phosphorylation of this site is stimulated 2- to 3-fold by S-adenosylmethionine. S-adenosylmethionine-dependent protein phosphorylation is time- and dose-dependent and occurs at physiological concentrations. S-adenosylhomocysteine has no effect on protein phosphorylation but inhibits S-adenosylmethionine-dependent protein phosphorylation. S-Adenosylmethionine/S-adenosylhomocysteine ratios varying from 0 to 5 produce a dose-dependent stimulation of the phosphorylation of the 50 kDa protein. In conclusion, these results show, for the first time, that the ratio S-adenosylmethionine/S-adenosylhomocysteine can modulate phosphorylation of a specific protein.  相似文献   

6.
Adenylate cyclase activity and 3′, 5′ cyclic adenosinemonophosphate (cAMP) have been followed through the heat-synchronized cell cycle of Tetrahymena pyriformis. While the specific activity of adenylate cyclase remained essentially constant throughout the cycle, cAMP oscillated (between 10 and 50 pmoles/mg protein) through two cycles. Minima were observed at each division (DS border) and maxima at each SG2 border. Each heat shock caused slight temporary reduction in cyclase activity. Further observations suggest to us that adenylate cyclase shows conformational changes in response to temperature-induced alterations and to changes in lipid composition of membranes.  相似文献   

7.
The conformation and conformational change of wool keratin S-carboxymethylated low-sulphur proteins (SCMKA), which are α-helical fibrous proteins, have been investigated in aqueous solution by means of c.d. Comparisons of various methods proposed for c.d. analysis of protein secondary structure are made using least-squares curve-fitting of the observed c.d. spectra of SCMKA with a linear combination of the corresponding reference spectra of secondary structures. It has been found that (i) the most satisfactory results are obtained with the method13 which takes into account the β-turn contribution: (ii) SCMKA is 52–54% α-helical in water and has little β-form, (iii) the addition of n-propanol produces, even at higher concentrations of n-propanol, little chnage in spectra with respect to helical character in water; (iv) SCMKA undergoes a thermally-induced conformational transition from α-helix to random coil around 50 C; and (v) S-aminoethylated low-sulphur proteins with positively charged protecting groups are /_~50% α-helical in water, which is similar to SCMKA, showing that the protecting groups introduced in the low-sulphur proteins are little effect upon their conformation in water  相似文献   

8.
Proteins from the 30 S ribosomal subunit of Escherichia coli were fractionated by column chromatography and individually incubated with 16 S ribosomal RNA. Stable and specific complexes were formed between proteins S4, S7, S8, S15 and S20, and the 16 S RNA. Protein S13 and one or both proteins of the S16S17 mixture bound more weakly to the RNA, although these interactions too were apparently specific. The binding of S16S17 was found to be markedly stimulated by proteins S4, S8, S15 and S20. Limited digestion of the RNA-protein complexes with T1 or pancreatic ribonucleases yielded a variety of partially overlapping RNA fragments, which retained one or more of the proteins. Since similar fragments were recovered when 16 S RNA alone was digested under the same conditions, their stability could not be accounted for by the presence of bound protein. The integrity of the fragments was, however, strongly influenced by the magnesium ion concentration at which ribonuclease digestion was carried out. Each of the RNA fragments was characterized by fingerprinting and positioned within the sequence of the 1600-nucleotide 16 S RNA molecule. The location of ribosomal protein binding sites was delimited by the pattern of fragments to which a given protein bound. The binding sites for proteins S4, S8, S15, S20 and, possibly, S13 and S16S17 as well, lie within the 5′-terminal half of the 16 S RNA molecule. In particular, the S4 binding site was localized to the first 500 nucleotides of this sequence while that for S15 lies within a 140-nucleotide sequence starting about 600 nucleotides from the 5′-terminus. The binding site for the protein S7 lies between 900 and 1500 nucleotides from the 5′-terminus of the ribosomal RNA.  相似文献   

9.
Two classes of inhibitors of histone methyltransferase I from calf thymus are reported. High concentrations (≧ 10 mM) of various alkyl or aralkyl amines and polyamines were inhibitory to the enzyme. Spermine and spermidine were among the most potent compounds in this group. The best monoamine inhibitor was 2-phenylethylamine, which gave 47% inhibition at 10 mM.The substituted phenanthridinium compound ethidium bromide was also an inhibitor of the enzyme. A number of analogs of ethidium bromide were tested, and the most potent compound (17) gave 50% inhibition at 0.125 mM. S-Adenosyl-l-ethionine (SAM) showed competitive inhibition of the enzyme as determined from a Lineweaver-Burke plot, while ethidium bromide was noncompetitive.  相似文献   

10.
The O-methylation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone, which has been previously postulated to be the final reaction in the biosynthesis of ubiquinone was demonstrated in vitro using cell extracts of Escherichia coli. S-Adenosyl-l-methionine was active as the methyl donor for the reaction. The enzyme concerned, S-adenosyl-l-methionine: 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone-O- methyltransferase, was partially purified and shown to have a molecular weight of about 50 000 and to require a divalent metal and dithiothreitol for optimal acitivity in vitro. The methyltransferase was absent from extracts from ubiG? mutants suggesting that the ubiG gene is the structural gene coding for the methyltransferase. The enzyme, although not firmly membrane-bound, showed some affinity for the cell membrane in broken cell preparations and could utilize the benzoquinone substrate when the latter was free or bound to the cell membrane, with about equal efficiency. It is concluded that in vivo, the methyltransferase reaction probably occurs at the internal surface of the cytoplasmic membrane.  相似文献   

11.
12.
The exponential plasma specific activity curve 2.5 to 12.5 min after injection (sc) of [14C]tyrosine was integrated and divided by time to obtain the mathematical relationship between the average equivalent specific activity S and the measured specific activity S in any individual animal. S is the constant, average value of S that is equivalent to the curvllinearly varying quantity that the body tissues are actually exposed to. Dividing the total brain radioactivity by S gave the tissue Tyr uptake U. The function dUdt is linear from 2.5 to 12.5 min and represents the rate of uptake of the amino acid. Incorporation into protein was similarly measured. Brain uptake of Tyr averaged 7.06, and the apparent protein incorporation was 1.99 nmol/g of brain per min. The γ-glutamyl cycle inhibitor l-methionine-RS-sulfoximine reduced total brain uptake of tyrosine by 42.8% and the apparent rate of protein incorporation by 39.0%.  相似文献   

13.
Flufenamate, a non-steroidal anti-inflammatory drug, is a powerful inhibitor of anion transport in the human erythrocyte (I50 = 6·10?7M). The concentration dependence of the binding to ghosts reveals two saturable components. [14C]Flufenamate binds with high affinity (Kd1 = 1.2·10?7M) to 8.5·105 sites per cell (the same value as the number of band 3 protein per cell); it also binds, with lower affinity (Kd2 = 10?4M) to a second set of sites (4.6·107 per cell). Pretreatment of cells with 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), a specific inhibitor of anion transport, prevents [14C]flufenamate binding only to high affinity sites. These results suggest that high affinity sites are located on the band 3 protein involved in anion transport. Extracellular chymotrypsin and pronase at low concentration cleave the 95 kDa band 3 into 60 kDa and 35 kDa fragments without affecting either anion transport or [14C]flufenamate binding. Splitting by trypsin at the inner membrane surface of the 60 kDa chymotryptic fragment into 17 kDa transmembrane fragment and 40 kDa water-soluble fragment does not affect [14C]flufenamate binding. In contrast degradation at the outer membrane surface of the 35 kDa fragment by high concentration of pronase or papain decreases both anion transport capacity and number of high affinity binding sites for [14C]flufenamate. Thus it appears that 35 kDa peptide is necessary for both anion transport and binding of the inhibitors and that the binding site is located in the membrane-associated domain of the band 3 protein.  相似文献   

14.
Dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) is reputed to be a plastoquinone antagonist which prevents the photoreduction of hydrophilic oxidants such as ferredoxin-NADP+. However, we have found that dibromothymoquinone inhibits only a small part of the photoreduction of lipophilic oxidants such as oxidized p-phenylenediamine. Dibromothymoquinone-resistant photoreduction reactions are coupled to phosphorylation, about 0.4 molecules of ATP consistently being formed for every pair of electrons transported. Dibromothymoquinone itself is a lipophilic oxidant which can be photoreduced by chloroplasts, then reoxidized by ferricyanide or oxygen. The electron transport thus catalysed also supports phosphorylation and the Pe2 ratio is again 0.4. It is concluded that there is a site of phosphorylation before the dibromothymoquinone block and another site of phosphorylation after the block. The former site must be associated with electron transfer reactions near Photosystem II, while the latter site is presumably associated with the transfer of electrons from plastoquinone to cytochrome f.  相似文献   

15.
Phosphorylation in vitro of the light-harvesting chlorophyll ab protein complex associated with Photosystem II (LHCII) resulted in the lateral migration of a subpopulation of LHCII from the grana to the stroma lamellae. This movement was characterized by a decrease in the chlorophyll ab ratio and an increase in the 77 K fluorescence emission at 681 nm in the stroma lamellae following phosphorylation. Polyacrylamide gel electrophoresis indicated that the principal phosphoproteins under these conditions were polypeptides of 26–27 kDa. These polypeptides increased in relative amount in the stroma lamellae and decreased in the grana during phosphorylation. Pulse/chase experiments confirmed that the polypeptides were labelled in the grana and moved to the stroma lamellae in the subsequent chase period. A fraction at the phospho-LHCII, however, was unable to move and remained associated with the grana fraction. LHCII which moved out into the stroma lamellae effectively sensitized Photosystem I (PS I), since the ability to excite fluorescence emission at 735 nm (at 77 K) by chlorophyll b was increased following phosphorylation. These data support the ‘mobile antenna’ hypothesis proposed by Kyle, Staehelin and Arntzen (Arch. Biochem. Biophys. (1983) 222, 527–541) which states that the alterations in the excitation-energy distribution induced by LHCII phosphorylation are, in part, due to the change in absorptive cross-section of PS II and PS I, resulting specifically from the movement of LHCII antennae chlorophylls from the PS-II-enriched grana to the PS-I-enriched stroma lamellae.  相似文献   

16.
The binding of inhibitors to site I of rabbit muscle phsphorylase b has beenstudied kinetically and thermodynamically for caffeine, adenine and adenosine. The effect of ligands on the tertiary structure has been investigated by studying the protection against 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) titration of the slow-reacting sulphydryl groups of the enzyme. Calorimetric and cysteinyl protection data taken together suggest that these inhibitors bind to both sites N and I even under conditions of saturation by glucose. Calorimetric results show that inhibitor binding to sites I and N at 25°C is driven enthalpically, although both ΔH and ΔS of interaction are significant. We conclude that attractive dispersion forces ought to be the main ones responsible for inhibitor binding to site I. AMP-activated phosphorylase b is inhibited by both caffeine and adenine by cooperative and exclusive binding to the inactive T conformation. The binding of the substrate (phosphate) and AMP when adenine is present was found to be exlusive to the active R conformation, whereas non-exclusive binding of the activator was observed when caffeine was added.  相似文献   

17.
The effects of methylglyoxal bis(guanylhydrazone) on S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50) activity were studied in the mouse kidney stimulated to growth by testosterone administration. The drug was found to be a potent inhibitor of the enzyme in vitro. Administration of methylglyoxal bis(guanylhydrazone) in vivo resulted in a transient inhibition followed by a strong enhancement of the enzyme activity. Dialysis of the kidney extract, to remove remaining methylglyoxal bis(guanylhydrazone), revealed a great and rapid increase in the activity of S-adenosyl-l-methionine decarboxylase. Injections of testosterone to castrated mice resulted in a marked increase in kidney weight and an accumulation of renal putrescine, spermidine and spermine. These effects of testosterone could not be blocked by simultaneous injections of methylglyoxal bis(guanylhydrazone). It appears that due to secondary effects by which the inhibition of methylglyoxal bis(guanylhydrazone) on S-adenosyl-l-methionine decarboxylase activity is circumvented the inhibitor seems to be of uncertain value in attempts to decrease selectively the in vivo levels of polyamines.  相似文献   

18.
19.
Geoffrey C. Owens  Itzhak Ohad 《BBA》1983,722(1):234-241
Thylakoid polypeptide phosphorylation has been studied in vivo and in vitro during plastid differentiation in Chlamydomonas reinhardii y-1. Pulse labeling cells at different stages of greening with [32P]orthophosphate revealed differences in the pattern of protein phosphorylation. In the early phase of greening the 44–47 kDa reaction center II polypeptides were labeled but the 22–24 kDa polypeptides of the light-harvesting chlorophyll ab-protein complex (LHC) were not. Later in the greening, coinciding with the formation of the antenna of Photosystem I and membrane stacking, the converse was found. Furthermore, the 22–24 kDa polypeptides of grana lamellae were less labeled than the same polypeptides found in the corresponding stroma lamellae. Polypeptides in the molecular mass range of 32–34 kDa were phosphorylated at all stages following the onset of greening. Dark-grown cells did not incorporate 32P in vivo or in vitro into the polypeptides present in the residual thylakoids. Similarly, cells greened in the presence of chloramphenicol, in which the synthesis of reaction centers is inhibited, showed no light-stimulated phosphorylation in vitro. However, the residual 32–34 kDa and 44–47 kDa polypeptides found in thylakoids of these cells were phosphorylated in vivo, whereas the LHC polypeptides synthesized in the presence of chloramphenicol were not. Phosphorylation of the LHC polypeptides (22–24 kDa) in these cells occurred if new reaction center polypeptides and all antennae components were formed, following removal of the inhibitor and further incubation of the cells in the light. Phosphorylation of LHC polypeptides was not resumed if active reaction centers were formed in the absence of complete restoration of all antenna components (incubation in the dark or light with addition of cycloheximide). It is concluded that phosphorylation is correlated with the thylakoid polypeptide content and organization.  相似文献   

20.
Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5p35 kinase and the ERK1AP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1S and the G2M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号