首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.  相似文献   

2.
This review provides a synthesis of recent work, using computational methods, on the action and inhibition mechanisms of class I ribonucleotide reductase (RNR). This enzyme catalyzes the rate-limiting step of the pathway for the synthesis of DNA monomers and, therefore, has long been regarded as an important target for therapies aiming to control pathologies that depend strongly on DNA replication. In fact, over the last years, several molecules, which are able to impair RNR activity by different mechanisms, have been applied effectively in anti-cancer, anti-viral and anti-parasite therapies. A better understanding of the chemical mechanisms involved in normal catalysis and in inhibition of the enzyme is important for the rational design of more specific and effective inhibitor compounds. To achieve this goal, computational methods, particularly quantum chemical calculations, have been used more and more frequently. The ever-growing capabilities of these methods together with undeniable advantages make it a stimulating area for research purposes.  相似文献   

3.
Recent technological advances have dramatically reduced the cost of DNA sequencing. In addition, these methods require lower DNA quantities and qualities than did the previous generation of molecular techniques. As a result, genomic-scale studies of natural populations of endangered species, including those using noninvasively collected samples, are increasingly feasible. Such studies have the potential to advance our understanding of behavior, demography, evolutionary ecology, biogeography, and population history, and to contribute to the prioritization of conservation efforts. I point to a number of salient examples. However, there are also some current limitations and challenges associated with this scale of population genomics research in nonhuman, nonmodel species. Here, I describe the practicalities of the present state of this research while providing what is intended to be a straightforward walkthrough of the technology and methods involved.  相似文献   

4.
Extrachromosomal DNA (ecDNA) is a cancer-specific circular DNA molecule that is derived from chromosomes. In contrast with linear chromosomes, ecDNA exhibits a unique structure that can be representative of high chromosome accessibility, contributing to hyperactivated proto-oncogenes and malignant behaviours. Meanwhile, nonchromosomal inheritance and recurrent mutations of ecDNA fuel tumour heterogeneity and evolution. Recent studies have demonstrated that ecDNA drives tumorigenesis and progression and is related to poor clinical outcomes and drug resistance across widespread cancers. Although ecDNA was first observed in 1965, with technological advancements, its critical functions in tumorigenesis are currently coming forth. In this review, we summarize the current understanding of the origin, biogenesis process, discovery history, molecular mechanisms, and physiological functions of ecDNAs in cancer. Additionally, we highlight the effective research methods to study ecDNA and offer novel insights for ecDNA-directed therapies.  相似文献   

5.
An alternate method for synthesis of double-stranded DNA segments   总被引:8,自引:0,他引:8  
Recent progress in the chemical synthesis of DNA has now made it possible to rapidly synthesize single-stranded DNAs over 40 bases in length. We have taken advantage of these longer DNAs in assembling and cloning a 132-base pair gene segment coding for amino acids 126 through the stop codon of human leukocyte interferon alpha 2. The method used involves DNA polymerase I-mediated repair synthesis of synthetic oligonucleotide substrates having short stretches of complementary sequence at their 3' termini. In the presence of DNA polymerase I and the four deoxyribonucleoside triphosphates, those primer-templates are converted to full length double-stranded DNAs. The economy in chemical synthesis using this approach is substantial with a greater than 40% reduction in the amount of chemical synthesis required as compared with the conventional approach. We describe in detail this methodology for the biochemical assembly of long gene segments from synthetic oligodeoxyribonucleotides.  相似文献   

6.
7.
Inhibition of deoxyribonucleic acid (DNA) synthesis in Escherichia coli by chemical inhibitors or by shifting cultures of temperature-sensitive elongation (dnaE and dnaB) or initiation (dnaA) mutants to nonpermissive conditions led to greatly increased synthesis of the enzyme ribonucleoside diphosphate reductase, which catalyzes the first reaction unique to the pathway leading to DNA replication. In contrast to the Gudas and Pardee proposed model for control of the synthesis of DNA repair enzymes, in which both DNA inhibition and DNA degradation are involved, DNA synthesis inhibition in recA, recB, recC, or lex strains results in increased synthesis of ribonucleotide reductase, which suggests that DNA degradation is not required. We propose that inhibition of DNA synthesis causes a cell to accumulate an unknown compound that stimulates the initiation of a new round of DNA replication, and that this same signal is used to induce ribonucleotide reductase synthesis.  相似文献   

8.
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.  相似文献   

9.
Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene structure, expression and function. Modified genes and consequently protein/enzymes can bridge genomics and proteomics research or facilitate commercial applications of gene and protein technologies. In this review, we will summarize various strategies, designing softwares and error correction methods for chemical gene synthesis, particularly for the synthesis and assembly of long DNA molecules based on polymerase cycling assembly. Also, we will briefly discuss some of the major applications of chemical synthesis of DNA sequences in basic research and applied areas.  相似文献   

10.
The development of vaccines is a multifactorial process that has evolved and expanded, particularly over the last decades. The search for immunogenic vaccines that are also acceptably safe and tolerable enacted continuous technological advances in this field. In this regard, the technology applied to vaccines can historically be divided into 3 approaches: the empirical approach, the modern approach, and the new technological wave. The empirical approach for vaccine development includes whole micro-organisms, attenuation, inactivation, cell cultures and sub-unit vaccines. The modern approach contributed to leaps and bounds to vaccine development using chemical conjugation, as well as recombinant protein DNA technology and reverse vaccinology. Lastly, the new technological wave includes, among others, bioconjugation, viral vectors, synthetic biology, self-amplification of messenger RNA, generalized modules for membrane antigens, structural vaccinology and the new adjuvants.  相似文献   

11.
Since nucleic acids are organic molecules, even DNA, which carries genetic information, is subjected to various chemical reactions in cells. Alterations of the chemical structure of DNA, which are referred to as DNA damage or DNA lesions, induce mutations in the DNA sequences, which lead to carcinogenesis and cell death, unless they are restored by the repair systems in each organism. Formerly, DNA from bacteria and bacteriophages and DNA fragments treated with UV or gamma radiation, alkylating or crosslinking agents, and other carcinogens were used as damaged DNA for biochemical studies. With these materials, however, it is difficult to understand the detailed mechanisms of mutagenesis and DNA repair. Recent progress in the chemical synthesis of oligonucleotides has enabled us to incorporate a specific lesion at a defined position within any sequence context. This method is especially important for studies on mutagenesis and translesion synthesis, which require highly pure templates, and for the structural biology of repair enzymes, which necessitates large amounts of substrate DNA as well as modified substrate analogs. In this review, the various phosphoramidite building blocks for the synthesis of lesion-containing oligodeoxyribonucleotides are described, and some examples of their applications to molecular and structural biology are presented.  相似文献   

12.
《IRBM》2008,29(2-3):133-135
A new Layer-by-Layer (LbL) DNA film synthesis, where the driving force is the natural DNA hybridization, is presented in this work. The DNA films were synthesized via a branched mechanism and do not include any chemical binders between each layer as it is the case for film obtained by other synthesis paths. Kinetics of film formation were monitored by mass measurements with an electroacoustic network analyzer. The presented synthesis is a pathway to new DNA structures which can be used in biotechnologies and is complementary to those obtained by other LbL techniques.  相似文献   

13.
无细胞蛋白质合成系统的研究进展   总被引:1,自引:0,他引:1  
无细胞蛋白质合成系统是一种以外源mRNA或DNA为模板 ,通过在细胞抽提物的酶系中补充底物和能源物质来合成蛋白质的体外系统 .与传统的体内重组表达系统相比 ,体外无细胞合成系统具有多种优点 ,如可表达对细胞有毒害作用或含有非天然氨基酸 (如D 氨基酸 )的特殊蛋白质 ,能够直接以PCR产物作为模板同时平行合成多种蛋白质 ,开展高通量药物筛选和蛋白质组学的研究等 .本文综述了无细胞蛋白质合成系统的发展历史、系统中合成蛋白质所需的能量供应、遗传模板的稳定性和微型无细胞生物反应器等多方面的研究 ,并探讨了无细胞蛋白质合成系统中存在的难点、研究方向和广泛的应用前景  相似文献   

14.
Clamp protein or clamp, initially identified as the processivity factor of the replicative DNA polymerase, is indispensable for the timely and faithful replication of DNA genome. Clamp encircles duplex DNA and physically interacts with DNA polymerase. Clamps from different organisms share remarkable similarities in both structure and function. Loading of clamp onto DNA requires the activity of clamp loader. Although all clamp loaders act by converting the chemical energy derived from ATP hydrolysis to mechanical force, intriguing differences exist in the mechanistic details of clamp loading. The structure and function of clamp in normal and translesion DNA synthesis has been subjected to extensive investigations. This review summarizes the current understanding of clamps from three kingdoms of life and the mechanism of loading by their cognate clamp loaders. We also discuss the recent findings on the interactions between clamp and DNA, as well as between clamp and DNA polymerase (both the replicative and specialized DNA polymerases). Lastly the role of clamp in modulating polymerase exchange is discussed in the context of translesion DNA synthesis.  相似文献   

15.
Kelley MR  Lee WR 《Genetics》1983,104(2):279-299
As a model system for studying mutagenesis, the oocyte of Drosophila melanogaster has exhibited considerable complexity. Very few experiments have been conducted on the effect of exposing oocytes to chemical mutagens, presumably due to their lower mutational response relative to sperm and spermatids. This lower response may be due either to a change in probability of mutation induction per adduct due to a change in the type of DNA repair or to a lower dose of the mutagen to the female germ line. To study molecular dosimetry and DNA repair in the oocyte, the large number of intracellular constituents (mtDNA, RNA, nucleic acid precursors and large quantities of proteins and lipids) must be separated from nuclear DNA. In this paper we present results showing reliable separation of such molecules enabling us to detect scheduled nuclear and mitochondrial DNA synthesis. We also, by understanding the precise timing of such events, can detect unscheduled DNA synthesis (UDS) as a measure of DNA repair. Furthermore, by comparing the UDS results in a repair competent (Ore-R) vs. a repair deficient (mei-9L1 ) strain, we have shown the oocyte capable of DNA repair after treatment with ethyl methanesulfonate (EMS). We conclude that the important determinant of mutation induction in oocytes after treatment with EMS is the time interval between DNA alkylation and DNA synthesis after fertilization, i.e., the interruption of continuous DNA repair.  相似文献   

16.
Polymerase chain reaction engineering   总被引:1,自引:0,他引:1  
A mathematical model for polymerase chain reaction (PCR) is developed, taking into account the three steps in this process: melting of DNA; primer annealing; and DNA synthesis (polymerization). Activity and deactivation of the polymerase enzyme as a function of temperature is incorporated in the kinetic model to get a better understanding of the amplification of DNA. Computer simulation of the model is carried out to determine the effects of various parameters, such as the cycle number, initial DNA concentration (copynumber), initial enzyme concentration, extension time, temperature ramp, and enzyme deactivation on the DNA generation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 359-366, 1997.  相似文献   

17.

Since nucleic acids are organic molecules, even DNA, which carries genetic information, is subjected to various chemical reactions in cells. Alterations of the chemical structure of DNA, which are referred to as DNA damage or DNA lesions, induce mutations in the DNA sequences, which lead to carcinogenesis and cell death, unless they are restored by the repair systems in each organism. Formerly, DNA from bacteria and bacteriophages and DNA fragments treated with UV or γ radiation, alkylating or crosslinking agents, and other carcinogens were used as damaged DNA for biochemical studies. With these materials, however, it is difficult to understand the detailed mechanisms of mutagenesis and DNA repair. Recent progress in the chemical synthesis of oligonucleotides has enabled us to incorporate a specific lesion at a defined position within any sequence context. This method is especially important for studies on mutagenesis and translesion synthesis, which require highly pure templates, and for the structural biology of repair enzymes, which necessitates large amounts of substrate DNA as well as modified substrate analogs. In this review, the various phosphoramidite building blocks for the synthesis of lesion-containing oligodeoxyribonucleotides are described, and some examples of their applications to molecular and structural biology are presented.  相似文献   

18.
Phenotypic plasticity is extremely widespread in the behaviour, morphology and life‐history of animals. However, inducible changes in the production of defensive chemicals are described mostly in plants and surprisingly little is known about similar plasticity in chemical defences of animals. Inducible chemical defences may be common in animals because many are known to produce toxins, the synthesis of toxins is likely to be costly, and there are a few known cases of animals adjusting their toxin production to changes in environmental conditions. We outline what is known about the occurrence of inducible chemical defences in animals and argue that there is immense potential for progress in this field. Possible directions include surveying diverse taxa to explore how general its occurrence may be and testing for selection acting on inducible chemical defences. Data on inducible chemical defences would provide insight into life‐history tradeoffs by enabling novel tests of how time‐costs and resource‐costs affect life‐history. If the synthesis of toxic compounds by animals proves accessible to manipulation, as it is in plants and fungi, this will open the way to refined estimates of the fitness costs of defence, ultimately providing a clearer picture of how plasticity evolves and is maintained in nature. Synthesis Inducible changes in the behaviour, morphology, and life‐history of animals are extremely widespread, but surprisingly little is known about similar changes in the production of defensive chemicals. We outline what is known about the occurrence of inducible chemical defences in animals and argue that there is immense potential for progress in this field. Possible directions include surveying diverse taxa to explore how general its occurrence may be and testing for selection acting on inducible chemical defences. Data on inducible chemical defences would provide insight into life‐history tradeoffs by enabling novel tests of how time‐costs and resource‐costs affect life‐history. If the synthesis of toxic compounds by animals proves accessible to manipulation, we will be able to estimate the fitness costs of defence more precisely, and ultimately provide a clearer picture of how plasticity evolves and is maintained in nature.  相似文献   

19.
Z Wang  X Wu  E C Friedberg 《Biochemistry》1992,31(14):3694-3702
Excision repair of DNA is an important cellular response to DNA damage caused by a broad spectrum of physical and chemical agents. We have established a cell-free system in which damage-specific DNA repair synthesis can be demonstrated in vitro with nuclear extracts from the yeast Saccharomyces cerevisiae. Repair synthesis of UV-irradiated plasmid DNA was observed in a radiation dose-dependent manner and was unaffected by mutations in the RAD1, RAD2, RAD3, RAD4, RAD10, or APN1 genes. DNA damaged with cis-platin was not recognized as a substrate for repair synthesis. Further examination of the repair synthesis observed with UV-irradiated DNA revealed that it is dependent on the presence of endonuclease III-sensitive lesions in DNA, but not pyrimidine dimers. These observations suggest that the repair synthesis observed in yeast nuclear extracts reflects base excision repair of DNA. Our data indicate that the patch size of this repair synthesis is at least seven nucleotides. This system is expected to facilitate the identification of specific gene products which participate in base excision repair in yeast.  相似文献   

20.
Identifying factors that influence technological evolution in small-scale societies is important for understanding human evolution. There have been a number of attempts to identify factors that influence the evolution of food-getting technology, but little work has examined the factors that affect the evolution of other technologies. Here, we focus on variation in technological richness (total number of material items and techniques) among recent hunter–gatherers from western North America and test three hypotheses: (i) technological richness is affected by environmental risk, (ii) population size is the primary determinant of technological richness, and (iii) technological richness is constrained by residential mobility. We found technological richness to be correlated with a proxy for environmental risk—mean rainfall for the driest month—in the manner predicted by the risk hypothesis. Support for the hypothesis persisted when we controlled for shared history and intergroup contact. We found no evidence that technological richness is affected by population size or residential mobility. These results have important implications for unravelling the complexities of technological evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号