首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A homology has been found between an octapeptide involved in attachment of the human immunodeficiency virus to helper/inducer T cells and an octapeptide segment of bovine pancreatic ribonuclease A. This segment (residues 19-26) contains the sites for subtilisin cleavage of this enzyme into the S-peptide and S-protein. From the X-ray crystal structure of ribonuclease, this sequence is known to be exposed to solvent and interacts little with the rest of the protein. A structure for the human immunodeficiency virus attachment peptide can be deduced from this homology, as a well-defined structure has been determined for this sequence in ribonuclease. This can be readily accomplished using previously developed computer methods based upon conformational energy calculations. The calculated structure for human immunodeficiency virus peptide is identical to the ribonuclease segment (19-26) in backbone conformation. It is stabilized by internal interactions of nonpolar residues, and by exposure of polar hydroxyl groups. The results suggest that the T-cell human immunodeficiency virus receptor may be hydrophilic in nature and that conservation of the sequence in two presumably functionally unrelated proteins is related to the need for conservation of exposed structure.  相似文献   

2.
We have developed a new method for the prediction of peptide sequences that bind to a protein, given a three-dimensional structure of the protein in complex with a peptide. By applying a recently developed sequence prediction algorithm and a novel ensemble averaging calculation, we generate a diverse collection of peptide sequences that are predicted to have significant affinity for the protein. Using output from the simulations, we create position-specific scoring matrices, or virtual interaction profiles (VIPs). Comparison of VIPs for a collection of binding motifs to sequences determined experimentally indicates that the prediction algorithm is accurate and applicable to a diverse range of structures. With these VIPs, one can scan protein sequence databases rapidly to seek binding partners of potential biological significance. Overall, this method can significantly enhance the information contained within a protein- peptide crystal structure, and enrich the data obtained by experimental selection methods such as phage display.  相似文献   

3.
功能酶被广泛应用于食品、化工、医药等领域,但却容易受高温环境限制,导致催化效率降低。以分子改造为目的的蛋白质工程技术是解决这一问题的关键环节,其能够对酶结构和功能进行改造,获得热稳定性好的工业酶。传统的定向进化方法只能依靠随机突变进行人工筛选,具有效率低、针对性差等缺点;理性设计作为酶热稳定性改造的主要方法,可借助各种计算机程序和软件预测潜在突变位点,但其要求对酶的催化机制、热稳定性机制有深入了解。对于大多数天然酶而言,酶的序列和晶体结构是最容易获取的信息,也是预测功能的重要基础。从酶的序列和晶体结构入手,重点介绍了共识突变、基于序列偏好性的突变、截短柔性区域、优化分子内相互作用力、刚化催化活性区域及计算机辅助筛选柔性位点等常用策略,这些策略具有筛选效率高、改造准确性高、实用性强等优点。结合多种酶的热稳定性改造案例进行分析,旨在为不同酶的改造策略选择提供有效参考,同时也为工业酶的耐热性研究提供理论支持。  相似文献   

4.
Due to advances in molecular biology the DNA sequences of structural genes coding for proteins are often known before a protein is characterized or even isolated. The function of a protein whose amino acid sequence has been deduced from a DNA sequence may not even be known. This has created greater interest in the development of methods to predict the tertiary structures of proteins. The a priori prediction of a protein's structure from its amino acid sequence is not yet possible. However, since proteins with similar amino acid sequences are observed to have similar three-dimensional structures, it is possible to use an analogy with a protein of known structure to draw some conclusions about the structure and properties of an uncharacterized protein. The process of predicting the tertiary structure of a protein relies very much upon computer modeling and analysis of the structure. The prediction of the structure of the bacteriophage 434 cro repressor is used as an example illustrating current procedures.  相似文献   

5.
M M Teeter  M Whitlow 《Proteins》1988,4(4):262-273
Methods that analyze protein circular dichroism (CD) spectra for fractions of secondary structure are evaluated for the plant protein crambin, which has a known high-resolution crystal structure. In addition, a two-step secondary structure prediction scheme is presented and used for the toxins homologous to crambin, shown by others to have secondary structures similar to crambin. The test of CD spectral analysis methods with the protein crambin employed two computer programs and several CD basis sets. Crambin's crystal structure, known to 0.945A resolution (Hendrickson, W.A., Teeter, M.M. Nature 290:107-113, 1981), allows accurate evaluation of results. Analysis with the protein spectra basis sets (Provencher, S.W., Gl?ckner, J. Biochemistry 20:33-37, 1981) as modified (Manavalan, P., Johnson, W.C., Jr. Anal. Biochem. 167:76-85, 1987) agreed most closely with crambin's crystal structure. This method was then applied to the CD spectra of the membrane-active toxins homologous to crambin (alpha 1- and beta-purothionin, phoratoxin A and B, and viscotoxin A3 and B). The new program SEQ (pronounced "seek") was developed to assign the secondary structure along the protein chain in a hierarchical fashion and applied to the plant toxins. The method constrained the secondary structure fractions to those from CD analysis and combined standard statistical methods with amphipathic helix location. Both CD-arrived secondary structure percentages and sequence assignment indicate that the viscotoxins are structurally most similar to crambin. Purothionin's secondary structure was predicted to be fundamentally similar to crambin's with a difference at the start of the first helix. This assignment agreed with Raman and NMR analyses of purothionin and lends validity to the method presented here. Differences from the NMR in the CD secondary structure fraction analysis for phoratoxin suggest interference in the CD from tryptophan residues.  相似文献   

6.
In a crystallography experiment, a crystal is irradiated with X-rays whose diffracted waves are collected and measured. The reconstruction of the structure of the molecule in the crystal requires knowledge of the phase of the diffracted waves, information that is lost in the passage from the three-dimensional structure of the molecule to its diffraction pattern. It can be recovered using experimental methods such as heavy-atom isomorphous replacement and anomalous scattering or by molecular replacement, which relies on the availability of an atomic model of the target structure. This can be the structure of the target protein itself, if a previous structure determination is available, or a computational model or, in some cases, the structure of a homologous protein. It is not straightforward to predict beforehand whether or not a computational model will work in a molecular replacement experiment, although some rules of thumb exist. The consensus is that even minor differences in the quality of the model, which are rather difficult to estimate a priori, can have a significant effect on the outcome of the procedure. We describe here a method for quickly assessing whether a protein structure can be solved by molecular replacement. The procedure consists in submitting the sequence of the target protein to a selected list of freely available structure prediction servers, cluster the resulting models, select the representative structures of each cluster and use them as search models in an automatic phasing procedure. We tested the procedure using the structure factors of newly released proteins of known structure downloaded from the Protein Data Bank as soon as they were made available. Using our automatic procedure we were able to obtain an interpretable electron density map in more than half the cases.  相似文献   

7.
We attempted to predict through computer modeling the structure of the light-harvesting complex II (LH-II) of Rhodospirillum molischianum, before the impending publication of the structure of a homologous protein solved by means of X-ray diffraction. The protein studied is an integral membrane protein of 16 independent polypeptides, 8 alpha-apoproteins and 8 beta-apoproteins, which aggregate and bind to 24 bacteriochlorophyll-a's and 12 lycopenes. Available diffraction data of a crystal of the protein, which could not be phased due to a lack of heavy metal derivatives, served to test the predicted structure, guiding the search. In order to determine the secondary structure, hydropathy analysis was performed to identify the putative transmembrane segments and multiple sequence alignment propensity analyses were used to pinpoint the exact sites of the 20-residue-long transmembrane segment and the 4-residue-long terminal sequence at both ends, which were independently verified and improved by homology modeling. A consensus assignment for the secondary structure was derived from a combination of all the prediction methods used. Three-dimensional structures for the alpha- and the beta-apoprotein were built by comparative modeling. The resulting tertiary structures are combined, using X-PLOR, into an alpha beta dimer pair with bacteriochlorophyll-a's attached under constraints provided by site-directed mutagenesis and spectral data. The alpha beta dimer pairs were then aggregated into a quaternary structure through further molecular dynamics simulations and energy minimization. The structure of LH-II so determined is an octamer of alpha beta heterodimers forming a ring with a diameter of 70 A.  相似文献   

8.
This paper describes a novel computer graphics tool for predicting protein structures. The method is based on structural profiles; which are plots of hydrophobicity, parameters used for secondary structure prediction, or other residue-specific traits against sequence number. Similar structural profiles can indicate similar tertiary structures, in the absence of sequence homology. The profiles of reference proteins, with known structure, can be used for prediction. In the method presented here, structural profiles are compared by interactive computer graphics, using the program Multiplot. As a test, a structural profile comparison of several proteins known to have similar 3D structures is presented. Comparison of structural profiles detects similar folding of the two domains of rhodanese, which was not easily detected by sequence homology.  相似文献   

9.
Fold recognition predicts protein three-dimensional structure by establishing relationships between a protein sequence and known protein structures. Most methods explicitly use information derived from the secondary and tertiary structure of the templates. Here we show that rigorous application of a sequence search method (PSI-BLAST) with no reference to secondary or tertiary structure information is able to perform as well as traditional fold recognition methods. Since the method, SENSER, does not require knowledge of the three-dimensional structure, it can be used to infer relationships that are not tractable by methods dependent on structural templates.  相似文献   

10.
Protein threading by recursive dynamic programming.   总被引:4,自引:0,他引:4  
We present the recursive dynamic programming (RDP) method for the threading approach to three-dimensional protein structure prediction. RDP is based on the divide-and-conquer paradigm and maps the protein sequence whose backbone structure is to be found (the protein target) onto the known backbone structure of a model protein (the protein template) in a stepwise fashion, a technique that is similar to computing local alignments but utilising different cost functions. We begin by mapping parts of the target onto the template that show statistically significant similarity with the template sequence. After mapping, the template structure is modified in order to account for the mapped target residues. Then significant similarities between the yet unmapped parts of the target and the modified template are searched, and the resulting segments of the target are mapped onto the template. This recursive process of identifying segments in the target to be mapped onto the template and modifying the template is continued until no significant similarities between the remaining parts of target and template are found. Those parts which are left unmapped by the procedure are interpreted as gaps.The RDP method is robust in the sense that different local alignment methods can be used, several alternatives of mapping parts of the target onto the template can be handled and compared in the process, and the cost functions can be dynamically adapted to biological needs.Our computer experiments show that the RDP procedure is efficient and effective. We can thread a typical protein sequence against a database of 887 template domains in about 12 hours even on a low-cost workstation (SUN Ultra 5). In statistical evaluations on databases of known protein structures, RDP significantly outperforms competing methods. RDP has been especially valuable in providing accurate alignments for modeling active sites of proteins.RDP is part of the ToPLign system (GMD Toolbox for protein alignment) and can be accessed via the WWW independently or in concert with other ToPLign tools at http://cartan.gmd.de/ToPLign.html.  相似文献   

11.
Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence‐based and structure‐based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure‐based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X‐ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease‐associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e‐5). When adding this information to sequence‐based features such as the difference between wildtype and mutant position‐specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence‐based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease‐associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Small‐angle X‐ray scattering (SAXS) is useful for determining the oligomeric states and quaternary structures of proteins in solution. The average molecular mass in solution can be calculated directly from a single SAXS curve collected on an arbitrary scale from a sample of unknown protein concentration without the need for beamline calibration or protein standards. The quaternary structure in solution can be deduced by comparing the experimental SAXS curve to theoretical curves calculated from proposed models of the oligomer. This approach is especially robust when the crystal structure of the target protein is known, and the candidate oligomer models are derived from the crystal lattice. When SAXS data are obtained at multiple protein concentrations, this analysis can provide insight into dynamic self‐association equilibria. Herein, we summarize the computational methods that are used to determine protein molecular mass and quaternary structure from SAXS data. These methods are organized into a workflow and demonstrated with four case studies using experimental SAXS data from the published literature.  相似文献   

13.

Background  

A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available.  相似文献   

14.
基于知识的蛋白质结构预测   总被引:5,自引:0,他引:5  
介绍了近几年基于知识的蛋白质三维结构预测方法及其进展.目前,基于知识的结构预测方法主要有两类,一类是同源蛋白模建,这种技术比较成熟,模建的结果可靠性比较高,但只适用于同源性比较高的目标序列的模建;另一类方法即蛋白质逆折叠技术,主要包括3D profile方法和基于势函数的方法,给出的是目标蛋白质的空间走向,它主要可用于序列同源性比较低的蛋白质的结构预测.  相似文献   

15.
During the past several years, the use of computer programs in the analysis of protein and DNA sequences has become commonplace. In all but the simplest procedures, the ability to critically review the results obtained with computer methods requires a basic knowledge of the algorithms employed (and the assumptions upon which they are based), an awareness of the capabilities and limitations of the particular program that implements an algorithm, and some familiarity with probability and statistics. We describe a number of computer methods that have been applied to the analysis of apolipoprotein sequences. We discuss the suitability of these methods for particular problems, how the choice of initial "parameters" can affect the results, and what the results can tell us about protein or gene sequences. We also identify some outstanding problems of apolipoprotein sequence analysis where further work is needed.  相似文献   

16.
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.  相似文献   

17.
基于蛋白质结构字母的预测和分析方法,一个必然的步聚,是将目标蛋白质离散成结构字母序列。本文在对蛋白质结构字母序列空间,及其最小根均方偏差变化,穷举分析的基础上,提出了一种新的蛋白质结构字母序列优化算法,全局贪婪算法。全局贪婪算法避免了基本贪婪算法过度依赖候选集大小,计算量过大、以及过早收缩于局部最小等缺点。经实验分析,全局贪婪算法在性能上优于基本贪婪算法和局部最优方法。。  相似文献   

18.
19.
The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein–ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.  相似文献   

20.
G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)-one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 A coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 A CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2.82 A from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 0.62 A CRMS from the crystal structure. We also used HierDock to predict the binding site of 11-cis-retinal in the MembStruk-predicted structure of bovine rhodopsin (closed loop). Scanning the whole protein structure leads to a structure in which the carbonyl O is only 2.85 A from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 2.92 A CRMS from the crystal structure. The good agreement of the ab initio-predicted protein structures and ligand binding site with experiment validates the use of the MembStruk and HierDock first principles' methods. Since these methods are generic and applicable to any GPCR, they should be useful in predicting the structures of other GPCRs and the binding site of ligands to these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号