首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A type-1 protein phosphatase (protein phosphatase-1G) was purified to homogeneity from the glycogen-protein particle of rabbit skeletal muscle. Approximately 3 mg of enzyme were isolated within 4 days from 5000 g of muscle. Protein phosphatase-1G had a molecular mass of 137 kDa and was composed of two subunits G (103 kDa) and C (37 kDa) in a 1:1 molar ratio. The subunits could be dissociated by incubation in the presence of 2 M NaCl, separated by gel-filtration on Sephadex G-100, and recombined at low ionic strength. The C component was the catalytic subunit, and was identical to the 37-kDa type-1 protein phosphatase catalytic subunit (protein phosphatase-1C) isolated from ethanol-treated muscle extracts, as judged by peptide mapping. The G component was the glycogen-binding subunit. It was very asymmetric, extremely sensitive to proteolytic degradation, and failed to silver stain on SDS/polyacrylamide gels. Protein phosphatase-1G was inhibited by inhibitor-1 and inhibitor-2, but unlike protein phosphatase-1C, the rate of inactivation was critically dependent on the ionic strength, temperature and time of preincubation with the inhibitor protein. At near physiological temperature and ionic strength, protein phosphatase-1G was inactivated very rapidly by inhibitor-1. Protein phosphatase-1G interacted with inhibitor-2 (I-2) to form an inactive species, with the structure GCI-2. This form could be activated by preincubation with Mg-ATP and glycogen synthase kinase-3. The G subunit could be phosphorylated on a serine residue(s) by cyclic-AMP-dependent protein kinase, but not by phosphorylase kinase or glycogen synthase kinase-3. Phosphorylation was rapid and stoichiometric, and increased the rate of inactivation of protein phosphatase-1G by inhibitor-1. The relationship of the G subunit to the 'deinhibitor protein' is discussed.  相似文献   

2.
Adipose tissue protein phosphatase inhibitor-2   总被引:1,自引:0,他引:1  
Rat fat cells contain three species of spontaneously active inhibitor proteins of protein phosphatase 1, as resolved by SDS-PAGE, with apparent molecular masses of 40 kDa, and 28 kDa respectively. The 33-kDa, thermostable inhibitor was highly purified from bovine adipose tissue and shown to be very similar to inhibitor-2 of skeletal muscle. It was phosphorylated, on threonine only, by glycogen synthase kinase 3. It formed an inactivated complex with protein phosphatase 1, that was reactivated by incubation with ATP-Mg and glycogen synthase kinase 3. By gel filtration it had a Stokes radius of 3.4 nm. Peptide and phosphopeptide maps, generated by Staphylococcus aureus V8 proteinase, trypsin or thermolysin, of the inhibitor and of the skeletal muscle inhibitor-2 were similar. The 40-kDa inhibitor, which was denatured by boiling, represents a novel protein phosphatase inhibitor protein or an undegraded precursor of inhibitor-2. The total activity of inhibitor-2-like material (thermostable and macromolecular) in an adipocyte cytosol extract corresponded to an intracellular concentration of 0.3 microM inhibitor-2.  相似文献   

3.
Inhibitor-1 purified from rabbit liver could not be distinguished from the skeletal muscle protein by chromatographic, electrophoretic and immunological criteria. Amino acid sequences comprising 68% of rabbit liver inhibitor-1 were identical to the skeletal muscle protein indicating that they are products of a single gene. Total inhibitor-1 activity in heat-treated rabbit liver extracts was similar to that in skeletal muscle extracts, and the phosphorylation state of inhibitor-1 increased from 14% to 42% in rabbit liver in vivo after an intravenous injection of glucagon. Monospecific antibodies to rabbit skeletal muscle inhibitor-1 recognised a single major protein of identical electrophoretic mobility (26 kDa) in each rabbit tissue examined (skeletal muscle, liver, brain, heart, kidney, uterus and adipose). The antibodies also recognised a single major (30 kDa) protein in the same rat tissues, except liver. The results show that while there are interspecies differences in apparent molecular mass, inhibitor-1 is likely to be the same gene product in each mammalian tissue. Inhibitor-1 was not detected in rat liver, either by activity measurements or immunoblotting, irrespective of the age, sex or strain of the animals. Immunoblotting also failed to detect inhibitor-1 in mouse liver, although it was present in guinea pig, porcine and sheep liver. The absence of inhibitor-1 in rat liver indicates that phosphorylation of this protein cannot underlie the increased phosphorylation of hydroxymethylglutaryl-CoA reductase observed after stimulation by glucagon. Monospecific antibodies to rabbit skeletal muscle inhibitor-2 recognised a 31 kDa protein in each rabbit tissue, and a 33 kDa protein in all rat tissues including liver. The results suggest that inhibitor-2 is the same gene product in each mammalian tissue.  相似文献   

4.
Two types of myosin light chain phosphatase from aortic smooth muscle extract were separated by chromatography on heparin-agarose. The phosphatase which appeared in the flow-through fractions had low activity on actomyosin, its apparent molecular mass was 260 kDa and upon ethanol treatment it generated a catalytic subunit with an apparent molecular mass of 36-39 kDa as determined by gel filtration. This phosphatase preferentially dephosphorylated the alpha-subunit of phosphorylase kinase and its phosphorylase phosphatase activity was not inhibited by heparin, inhibitor-1 or inhibitor-2. The phosphatase retained by heparin-agarose had high activity on actomyosin, its apparent molecular mass was 150 kDa and upon ethanol treatment it generated a catalytic subunit with an apparent molecular mass of 39-42 kDa. It preferentially dephosphorylated the beta-subunit of phosphorylase kinase and its phosphorylase phosphatase activity was not inhibited by heparin, inhibitor-1 or inhibitor-2. Myosin light chain was phosphorylated by myosin light chain kinase in peptides AB (Ser-P) and CD (Thr-P), and/or by protein kinase C in peptides E (Ser-P) and F (Thr-P) as determined by one-dimensional phosphopeptide mapping. The catalytic subunit of heparin-agarose flow-through phosphatase preferentially dephosphorylated peptide F over peptides AB, CD and E in both isolated light chain and actomyosin. The catalytic subunit of heparin-agarose bound phosphatase could effectively dephosphorylate all sites in isolated light chain, whereas it was less effective on dephosphorylation of peptide E in actomyosin.  相似文献   

5.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

6.
7.
A third form of protein phosphatase 1 has been identified in skeletal muscle which is distinct from the species composed of the catalytic subunit complexed to the glycogen-binding subunit (protein phosphatase 1G) or inhibitor-2 (protein phosphatase 1I). The third form has an apparent molecular mass of 110 kDa, is not immunoprecipitated by antibody prepared against the glycogen-binding subunit, does not interact with glycogen and is devoid of inhibitor-2. It is tightly bound to myosin and is therefore termed protein phosphatase 1M.  相似文献   

8.
Protein phosphatases assayed with phosphorylase alpha are present in the soluble and particulate fractions of rat thymocytes. Phosphorylase phosphatase activity in the cytosol fraction was resolved by heparin-Sepharose chromatography into type-1 and type-2A enzymes. Similarities between thymocyte and muscle or liver protein phosphatase-1 included preferential dephosphorylation of the beta subunit of phosphorylase kinase, inhibition by inhibitor-2 and retention by heparin-Sepharose. Similarities between thymocyte and muscle or liver protein phosphatase-2A included specificity for the alpha subunit of phosphorylase kinase, insensitivity to the action of inhibitor-2, lack of retention by heparin-Sepharose and stimulation by polycationic macromolecules such as polybrene, protamine and histone H1. Protein phosphatase-1 from the cytosol fraction of thymocytes had an apparent molecular mass of 120 kDa as determined by gel filtration. The phosphatase-2A separated from the cytosol of thymocytes may correspond to phosphatase-2A0, since it was completely inactive (latent) in the absence of polycation and had activity only in the presence of polycations. The apparent molecular mass of phosphatase-2A0 from thymocytes was 240 kDa as determined by gel filtration. The catalytic subunit of thymocyte type-1 protein phosphatase was purified with heparin-Sepharose chromatography followed by gel filtration and fast protein liquid chromatography on Mono Q column. The purified type-1 catalytic subunit exhibited a specific activity of 8.2 U/mg and consisted of a single protein of 35 kDa as judged by SDS-gel electrophoresis. The catalytic subunit of type-2A phosphatase from thymocytes appearing in the heparin-Sepharose flow-through fraction was further purified on protamine-Sepharose, followed by gel filtration. The specific activity of the type-2A catalytic subunit was 2.1 U/mg and consisted of a major protein of 34.5 kDa, as revealed by SDS-gel electrophoresis.  相似文献   

9.
Inhibitor-2, purified by an improved procedure, was used to identify protein phosphatases capable of catalysing its dephosphorylation. The results showed that, under our experimental conditions, protein phosphatases-1, 2A and 2B were the only significant protein phosphatases in rabbit skeletal muscle extracts acting on this substrate. Protein phosphatases-1 and 2A accounted for all the inhibitor-2 phosphatase activity in the absence of Ca2+ (resting muscle), and the potential importance of these enzymes in vivo is discussed. Protein phosphatase-2B, a Ca2+-calmodulin-dependent enzyme, could account for up to 30% of the inhibitor-2 phosphatase activity in contracting muscle. The Km of protein phosphatase-1 for inhibitor-2 (40 nM) was 100-fold lower than the Km for phosphorylase a (4.8 microM). This finding, coupled with the failure of inhibitor-2 to inhibit its own dephosphorylation, suggests that inhibitor-2 is dephosphorylated at one of the two sites on protein phosphatase-1 involved in preventing the dephosphorylation of other substrates. The dephosphorylation of inhibitor-2 by protein phosphatase-1 was also unaffected by inhibitor-1, suggesting that the phosphorylation state of inhibitor-2 is unlikely to be controlled by cyclic AMP in vivo.  相似文献   

10.
Serum-stimulated mouse embryo fibroblasts specifically secrete two proteins of molecular weights 48,000 and 26,000. The 48 kDa protein showed affinity to concanavalin A and was precipitated by antibody to plasminogen activator inhibitor. Immunoflowcytometry using anti plasminogen activator inhibitor-1 serum indicate the presence of the 48 kDa protein in quiescent cells; this protein was virtually absent in serum-stimulated cells. The presence of the plasminogen activator inhibitor-1 related protein in quiescent cells and its absence in serum-stimulated cells in combination with the observation on the absence of this protein, in the medium of quiescent cells and its presence in the medium of stimulated cells indicate that the 48 kDa protein was transferred from the cells into the medium upon serum-stimulation. The serum-mediated transfer of plasminogen activator inhibitor-1 from the cells into the medium was inhibited by actinomycin-D suggesting that the transfer process required actinomycin-D sensitive events. Treatment of pre-labelled quiescent cells with medium containing 20% fetal calf serum resulted in the gradual transfer of the labelled 48 kDa protein to the extra cellular matrix. These studies indicate that exposure of quiescent cells to fetal calf serum results in the transfer of plasminogen activator inhibitor-1 from the cells to the growth mediumvia extracellular matrix. The translocation of the protease inhibitor from the cells to the matrix and medium may enable the cellular and possibly the membrane proteases to act on growth factors or their receptors thereby initiating the mitogenic response.  相似文献   

11.
Protein phosphatase inhibitor-1 was purified from bovine adipose tissue. The protein had an apparent molecular mass of 32 kDa by SDS/PAGE and a Stokes' radius of 3.4 nm. It was phosphorylated by cAMP-dependent protein kinase on a threonyl residue; this phosphorylation was necessary for inhibition of protein phosphatase-1. Bovine adipose tissue inhibitor-1 was compared directly with rabbit skeletal muscle inhibitor-1 and with a 32000-Mr, dopamine- and cAMP-regulated phosphoprotein from bovine brain (DARPP-32), also an inhibitor of protein phosphatase-1. By the following biochemical and immunochemical criteria, bovine adipose tissue inhibitor-1 was found to be very similar and possibly identical to DARPP-32 and was clearly distinct from skeletal muscle inhibitor-1: molecular mass by SDS/PAGE; Stokes' radii; phosphorylation on threonine residues; Staphylococcus-aureus-V8-protease-generated peptide patterns analyzed by SDS/PAGE; tryptic phosphopeptide maps analysed by two-dimensional thin-layer electrophoresis/chromatography; elution on reverse-phase HPLC; chymotryptic peptide maps as analysed by reverse-phase HPLC; amino acid composition; antibody recognition by immunoprecipitation and immunoblotting; effect of cyanogen bromide cleavage on protein phosphatase inhibitor activity. Based on these results we conclude that bovine brain and adipose tissue contain an identical phosphoprotein inhibitor of protein phosphatase-1 (DARPP-32), which is distinct from that of skeletal muscle (inhibitor-1).  相似文献   

12.
Inhibitor-1 from rabbit skeletal muscle was phosphorylated by protein kinase dependent on adenosine 3' :5'-monophosphate (cyclic AMP), but not by phosphorylase kinase or by glycogen synthetase kinase-2. Protein phosphatase-III, isolated and stored in the presence of manganese ions to keep it stable, was in a form which catalysed a rapid dephosphorylation and inactivation of inhibitor-1. The kinetic constants for the dephosphorylation of inhibitor-1 [Km = 0.7 micron, V(rel) = 40] were comparable to those for the dephosphorylation of phosphorylase kinase [Km =1.1 micron, V (rel) = 62] and phosphorylase [Km = 5.0 micron, V (rel) = 100]. The dephosphorylation of inhibitor -1 was inhibited by inhibitor-2, indicating that it was catalysed by protein phosphatase-III, and not by another enzyme that might be contaminating the preparation. When protein phosphatase-III was diluted into buffers containing excess EDTA, it lost activity initially, but after 90 min, the activity reached a plateau that remained stable for at least 20h. The initial loss in activity varied with the substrate that was tested; it was 20-30% with phosphorylase a, 50-60% with phosphorylase kinase and greater than or equal to 95% with inhibitor-1. This form of protein phosphatase-III was inhibited by inhibitor-1 in a noncompetitive manner, and the Ki for inhibitor-1 was 1.6 +/- 0.3 nM. The phosphorylase phosphatase, phosphorylase kinase phosphatase and glycogen synthetase phosphatase activities of protein phosphatase-III were inhibited in an identical manner by inhibitor-1. This result emphasizes the potential importance of inhibitor-1 in the regulation of glycogen metabolism, since it can influence the state of phosphorylation of three different enzymes. The formation of the inactive complex between inhibitor-1 and protein phosphatase-III was reversed by incubation with trypsin (which destroyed inhibitor-1, but not protein phosphatase-III) or by dilution of the inactive complex. Kinetic studies, using the form of protein phosphatase-III which dephosphorylated inhibitor-1 very rapidly, demonstrated three unusual features of the system: (a) inhibitor-1 was still as powerful and inhibitor of the dephosphorylation of phosphorylase a and phosphorylase kinase a even under conditions where it was being rapidly dephosphorylated; (b) inhibitor-1 was not an inhibitor of its own dephosphorylation; (c) phosphorylase a did not effect the rate of dephosphorylation of inhibitor-1 even when it was present in a 50-fold molar excess over inhibitor-1. The result of these three properties is that inhibitor-1 is preferentially dephosphorylated by protein phosphatase-III even in the presence of a large excess of other phosphoprotein substrates. Inhibitor-1 was also dephosphorylated by protein phosphatase-II. The kinetic constants for the dephosphorylation of inhibitor-1 [Km = 2.8 micron, V (rel) = 200] and the alpha-subunit of phosphorylase kinase [Km = 3.7 micron, V (rel) = 100]were comparable...  相似文献   

13.
1. Phosphorylcholine-reactive protein (PRP) affinity-purified from channel catfish (Ictalurus punctatus) serum on phosphorylcholine-Sepharose, eluted from Bio-Gel A-5M as a 94.6 +/- 2.4 kDa protein when the gel filtration column buffer (Tris-saline) contained 25mM ethylenediaminetetraacetic acid (EDTA). 2. PRP chelated with EDTA immediately after affinity purification and gel-filtered in Tris-saline-EDTA, eluted as a 75.5 +/- 2.67 kDa protein referred to as fast-PRP (F-PRP). 3. PRP and F-PRP were identical on SDS-PAGE. Both resolved as a broad band of protein (ca 86-100 kDa) on non-reducing gels or as a ca 100 kDa protein after reduction with 2-mercaptoethanol (2-ME). 4. After gel-filtration in Tris-saline-EDTA, nearly complete reduction of 100 kDa PRP was achieved on SDS-PAGE. However, the protein regained its resistance to reduction upon storage at -60 degrees C. 5. SDS-PAGE and native PAGE also revealed that during storage, PRP and F-PRP combined to form 3 different aggregates referred to as aggregated-PRP (aggPRP). These aggregates are readily dissociated in the presence of 2-ME, suggesting a covalent interaction between adjacent pentamers comprising decameric aggPRPs. 6. PRP, F-PRP, and aggPRP have similar amino acid compositions.  相似文献   

14.
Indicative of the importance of protein phosphorylation in the core circadian clock mechanism, chronically applied inhibitors of both protein kinases and phosphoprotein phosphatases have significant effects on the period, phase, and light-dependent regulation of circadian rhythms in the dinoflagellate Lingulodinium polyedrum. This study was aimed at identifying the presence of the affected phosphatase(s). Dephosphorylation of a PP1/PP2A-specific substrate by L. polyedrum extracts was inhibited by okadaic acid only at concentrations greater than 100 nM, as in vivo, by mammalian inhibitor-2 (I-2), and by an endogenous inhibitor with properties similar to I-2, indicating that a type-1 protein phosphatase (PP1) was predominant. A cDNA encoding a highly conserved PP1 was isolated, the 1st such signaling molecule identified in dinoflagellates. Antisera specific for this type of phosphatase recognized a 34 kDa protein in L. polyedrum extract, this being the same size as the PP1 encoded by the isolated cDNA. These findings are consistent with the suggestion that the L. polyedrum PP1 may be a part of the clock mechanism in this species.  相似文献   

15.
The steady-state interaction between protein phosphatase-1 and its two inhibitor proteins was studied in vitro at low enzyme concentrations where the assumptions of the Michaelis-Menten equation appeared to be valid. Under these conditions, and in the absence of divalent cations, inhibitor-1 behaved as a mixed inhibitor using phosphorylase alpha as a substrate, whereas inhibitor-2 was a competitive inhibitor. The results demonstrate that inhibitor-1 and inhibitor-2 do not interact with protein phosphatase-1 in an identical manner. Inhibitor-1 was only a substrate for protein phosphatase-1 in the presence of Mn2+, and its dephosphorylation was inhibited competitively by inhibitor-2 (Kis = 8 nM). Inhibitor-1 did not inhibit its own dephosphorylation in the presence of Mn2+. Its Km as a substrate (190 nM) was very much higher than its Ki as an inhibitor (1.5-7.5 nM). The results are consistent with a model in which a single binding site for inhibitor-1 is present on protein phosphatase-1, distinct from the binding site for phosphorylase alpha. It is envisaged that the binding of inhibitor-1 to this site not only inhibits the dephosphorylation of other substrates but permits access of its phosphothreonine to the same catalytic group(s) responsible for the dephosphorylation of other substrates. G-substrate, a protein phosphorylated exclusively on threonine residues, did not inhibit the dephosphorylation of phosphorylase alpha and its dephosphorylation was potently inhibited by inhibitor-1 or inhibitor-2. The role of the phosphothreonine residue in inhibitor-1 is discussed in the light of these results.  相似文献   

16.
Characterisation of a reconstituted Mg-ATP-dependent protein phosphatase   总被引:14,自引:0,他引:14  
Homogenous preparations of the catalytic subunit of protein phosphatase-1 and inhibitor-2 can be combined to produce an inactive enzyme that consists of a 1:1 complex between these two proteins. This species is indistinguishable from the Mg-ATP-dependent protein phosphatase in that preincubation with glycogen synthase kinase-3 and Mg-ATP is required to generate activity. Activation results from the phosphorylation of inhibitor-2. The molar concentrations of protein phosphatase-1 and inhibitor-2 in rabbit skeletal muscle (0.25-0.5 microM) are similar. Incubation of the reconstituted Mg-ATP-dependent protein phosphatase with chymotrypsin is accompanied by limited proteolysis of inhibitor-2 and the loss of its phosphorylation site(s). This species can be activated by glycogen synthase kinase-3 and Mg-ATP provided that inhibitor-2 is added. This exogenous inhibitor-2 appears to displace the fragments of inhibitor-2 from the enzyme that were generated by chymotryptic digestion. These experiments may explain the report [Yang, S.D., Vandenheede, J.R. and Merlevede, W. (1981) J. Biol. Chem. 256, 10231-10234] that inhibitor-2 can function as an 'activator' as well as an inhibitor of the Mg-ATP-dependent protein phosphatase. Incubation of the catalytic subunit of protein phosphatase-1 with sodium fluoride or sodium pyrophosphate converted the enzyme to an inactive form that could be partially reactivated by manganese ions, but not by glycogen synthase kinase-3 and Mg-ATP. Conversely, the reconstituted Mg-ATP-dependent protein phosphatase could only be activated by glycogen synthase kinase-3 and Mg-ATP, and not by manganese ions. It is concluded that the conversion of protein phosphatase-1 to a manganese-ion dependent form is a quite separate phenomenon from the formation of the Mg-ATP-dependent protein phosphatase. Inhibitor-2 can inactivate protein phosphatase-1 by a second mechanism that is not reversed by preincubation with glycogen synthase kinase-3 and Mg-ATP. This occurs at higher concentrations of inhibitor-2 than those required to form the Mg-ATP-dependent protein phosphatase, and appears to result from the binding of inhibitor-2 to a distinct site on the enzyme.  相似文献   

17.
The catalytic subunits of bovine platelet protein phosphatases were separated into three distinct forms by chromatography on heparin-Sepharose. Each phosphatase was further purified to apparent homogeneity as judged in sodium dodecyl sulfate-polyacrylamide gel yielding single protein bands of 37, 41, and 36 kDa. The 37-kDa phosphatase was excluded from heparin-Sepharose and preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. It was stimulated by polycations (polybrene or histone H1) and was inhibited by okadaic acid (IC50 = 0.3 nM), but its activity was not influenced by inhibitor-2 or heparin. The 41-kDa phosphatase was eluted from heparin-Sepharose by 0.20-0.25 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was stimulated by polycations and inhibited by okadaic acid (IC50 = 2 nM), but its activity was not affected by inhibitor-2 or heparin. The 36-kDa phosphatase was eluted from heparin-Sepharose by 0.45-0.50 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was inhibited by inhibitor-2, heparin, histone H1, and okadaic acid (IC50 = 70 nM). The 37- and 36-kDa phosphatases can be classified as type-2A and type-1 enzymes, respectively. The 41-kDa phosphatase does not precisely fit the criteria of either type, showing only partial similarities to both type-1 and type-2A enzymes and it may represent a novel type of protein phosphatase in bovine platelets.  相似文献   

18.
Four types of polycation-stimulated (PCS) phosphorylase phosphatases have been isolated from rabbit skeletal muscle. They are called PCSH (390 kDa), PCSM (250 kDa), and PCSL (200 kDa) phosphatase according to the apparent molecular weight of the native enzymes in gel filtration. Two forms of PCSH phosphatase could be separated by Mono Q fast protein liquid chromatography: PCSH1 and PCSH2. In the absence of polycations, the specific activities of the PCSH1, PCSH2, PCSM, and PCSL phosphatase were 400, 680, 600, and 3000 units/mg, respectively, using phosphorylase a as a substrate. They all contain a 62-65- and a 35-kDa subunit, the latter being the catalytic subunit. In addition PCSH1 phosphatase contains a 55-kDa subunit and the PCSM phosphatase a 72-75-kDa subunit in a substoichiometric ratio. All the PCS phosphatases are insensitive to Ca2+ calmodulin, inhibitor-1, and modulator protein. They display a high specificity for the alpha-subunit of phosphorylase kinase and a broad substrate specificity. The PCSH1 and PCSH2 phosphatases, but not the catalytic subunit (PCSC phosphatase), show a high degree of specificity for the deinhibitor protein. During the purification the phosphorylase to inhibitor-1 phosphatase activity ratio (10:1) remained constant for the PCSH and PCSL enzymes but decreased for the PCSM phosphatase. The stimulation observed with low concentrations of polycations is enzyme directed. The different enzyme forms show a characteristic concentration optimum and degree of stimulation. At higher concentrations, polycations become inhibitory and a time-dependent deactivation of the phosphatases is observed.  相似文献   

19.
Inhibitor-1 is a protein which inhibits phosphorylase phosphatase only when it has been phosphorylated by cyclic-AMP-dependent protein kinase [Huang, F. L. and Glinsmann, W. H. (1976) Eur. J. Biochem. 70, 419--426]. Inhibitor-1 was purified by a heat treatment at 90 degrees C, precipitation with ammonium sulphate, chromatography on DEAE-cellulose, gel filtration on Sephadex G-100, and finally rechromatography of the phosphorylated protein on DEAE-cellulose, The protein was purified 4000-fold and 1.5 mg per 1000 g muscle was obtained in seven days corresponding to an overall yield of 15-20%. The purified protein was in a state approaching homogeneity as judged by the criteria of polyacrylamide-gel electrophoresis and ultracentrifugal analysis. The concentration of inhibitor-1 in vivo was calculated to be 1.5 micron, which is at least as high as the concentration of phosphorylase phosphatase. The amino acid composition of inhibitor-1 showed several unusual features. Glutamic acid and proline accounted for nearly one third of the residues, tyrosine, tryptophan and cysteine were absent, and the content of aromatic amino acids was very low. The molecular weight measured by sedimentation equilibrium centrifugation was 19200 and by amino acid analysis was 20800. These values were lower than the mol. wt 26000 determined empirically by gel electrophoresis in the presence of sodium dodecyl sulphate, and much lower than the apparent molecular weight of 60000 estimated by gel filtration on Sephadex G-100. The gel filtration behaviour, stability to heating at 100 degrees C and amino acid composition suggest that inhibitor-1 may possess little ordered structure. The phosphorylated from of inhibitor-1 contained close to one molecule of covalently bound phosphate per mole of protein, which is consistent with the previous finding of a unique decapeptide sequence at the site of phosphorylation, Ile-Arg-Arg-Arg-Arg-Pro-Thr(P)-Pro-Ala-Thr- [Cohen, P., Rylatt, D. B. and Nimmo, G. A. (1977) FEBS Lett. 76, 182-186].the phosphorylated form of inhibitor-1 inhibited phosphorylase phosphatase activity (0.02U) by 50% at a concentration of only 7.0 nM in the standard assay, but the phosphorylated decapeptide was 1000-2000 times less effective as an inhibitor.  相似文献   

20.
High molecular weight muscle protein(s), present as a "doublet" (approximately 320 and approximately 290 kDa apparent molecular weight) in partially purified preparations of inhibitor-2 from rabbit skeletal muscle, and homogeneous bovine brain microtubule associated protein-2 are both in vitro substrates for a soluble insulin-stimulatable serine/threonine kinase in 3T3-L1 adipocytes. The high molecular weight muscle substrate "doublet" was specifically immunoprecipitated by affinity-purified anti-microtubule associated protein-2 antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号