首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
'Locked nucleic acids' (LNAs) are sugar modified nucleic acids containing the 2'-O-4'C-methylene-β-D-ribofuranoses. The substitution of RNAs with LNAs leads to an enhanced thermostability. Aptamers are nucleic acids, which are selected for specific target binding from a large library pool by the 'SELEX' method. Introduction of modified nucleic acids into aptamers can improve their stability. The stem region of a ricin A chain RNA aptamer was substituted by locked nucleic acids. Different constructs of the LNA-substituted aptamers were examined for their thermostability, binding activity, folding and RNase sensitivity as compared to the natural RNA counterpart. The LNA-modified aptamers were active in target binding, while the loop regions and the adjacent stem nucleotides remained unsubstituted. The thermostability and RNase resistance of LNA substituted aptamers were enhanced as compared to the native RNA aptamer. This study supports the approach to substitute the aptamer stem region by LNAs and to leave the loop region unmodified, which is responsible for ligand binding. Thus, LNAs possess an encouraging potential for the development of new stabilized nucleic acids and will promote future diagnostic and therapeutic applications.  相似文献   

2.
3.
A number of pathogenic RNA viruses, such as HIV-1, have extensive folded RNA conformations with imperfect A-form duplexes that are essential for virus function, and could serve as targets for structure-specific antiviral drugs. A method for the discovery of such drugs involves evaluation of the interactions with RNA of a wide variety of compounds that are known to bind to nucleic acids by different mechanisms. This approach has been initiated by using corresponding sequence RNA and DNA polymers as initial test systems for analysis of RNA binding strength and selectivity. Compounds that bind exclusively in the minor groove in AT sequences of DNA do not have significant interactions with RNA. Polycations, however, can show significant RNA affinity and binding selectivity, probably through complex formation in the RNA major groove. Some intercalators and a group of diphenylfuran cations have strong interactions with RNA that are very dependent on compound structure. RNA hairpin model systems for the RRE binding site of HIV-1 Rev protein were constructed for more detailed investigations. The diphenylfuran cations bind strongly to RRE and selectively inhibit Rev binding. CD, NMR, and fluorescence binding studies indicate that the active compounds bind in the internal loop region of RRE (with binding constants >107M−1), and cause a conformational change in the RNA. None of the standard nucleic acid binding modes appears to fit the results for complexes of the active compounds with RRE, and it is proposed that the diphenylfuran system threads through the internal loop region of RRE. Such a model allows contacts of the furan cationic substituents with both grooves of RRE in addition to the intercalation interactions with the bases.  相似文献   

4.
Selection of functional RNAs from randomized pool of RNA molecules successfully affords RNA aptamers that specifically bind to small molecules, and that have catalytic activities. Recent structural analyses of the ribosomal RNA complex suggest that the RNA-protein complex would be a new structural candidate for the design of tailor-made receptors and enzymes. We have designed an ATP binding domain that consists of an RNA subunit and a peptide subunit by means of structure-based design approach and successive in vitro selection method. The RNA subunit is designed to consist of two functional domains; an ATP binding domain with 20 randomized nucleotides and an adjacent stem region that serves as a binding site for the RNA-binding peptide. The randomized nucleotide region was placed next to the HIV-1 Rev response element to enable the formation of "ribonucleopeptide" pools in the presence of the Rev peptide. In vitro selection of RNA oligonucleotides from the randomized pool afforded a ribonucleopeptide receptor specific for ATP. The ATP-binding ribonucleopeptide did not share the known consensus nucleotide sequence for ATP aptamers, and completely lost its ATP-binding ability in the absence of the Rev peptide. The ATP-binding activity of the ribonucleopeptide was increased by a substitution of the N-terminal amino acid of the Rev peptide. These results demonstrate that the peptide stabilizes the functional structure of RNA and suggest that amino acids outside the RNA binding region of the peptide participate in the ATP binding. Our approach would provide a new strategy for the design of tailor-made ribonucleopeptide receptors.  相似文献   

5.
6.
The cylindrical inclusion protein of potyviruses contains the so-called nucleoside triphosphate binding motif, an amino acid sequence motif present in proteins encoded by most positive-strand RNA viruses, some double-strand RNA viruses, apparently all groups of double-strand DNA viruses, and also several single-strand DNA viruses. Further sequence analysis has allowed to include the cylindrical inclusion protein of potyviruses as a member of a superfamily of helicaselike proteins. In this paper we show that the purified cylindrical inclusion protein of plum pox potyvirus interacts with RNA and ATP and copurifies with a nucleic acid-stimulated ATPase activity. To our knowledge, this is the first time that this kind of enzymatic activity has been experimentally associated with a positive-strand RNA virus-encoded protein.  相似文献   

7.
The double-stranded RNA-binding motif (dsRBM) is a widely distributed motif frequently found within proteins with sequence non-specific RNA duplex-binding activity. In addition to the binding of double-stranded RNA, some dsRBMs also participate in complex formation via protein–protein interactions. Interestingly, a lot of proteins containing multiple dsRBMs have only some of their dsRBMs with the expected RNA duplex-binding competency proven, while the functions of the other dsRBMs remain unknown. We show here that the dsRBM1 of RNA helicase A (RHA) can cooperate with a C-terminal domain of proline-rich content to gain novel nucleic acid-binding activities. This integrated nucleic acid-binding module is capable of associating with the consensus sequences of the constitutive transport element (CTE) RNA of type D retrovirus against RNA duplex competitors. Remarkably, binding activity for double-stranded DNA corresponding to the consensus sequences of the cyclic-AMP responsive element also resides within this composite nucleic acid binder. It thus suggests that the dsRBM fold can be used as a platform for the building of a ligand binding module capable of non-RNA macromolecule binding with an accessory sequence, and functional assessment for a newly identified protein containing dsRBM fold should be more cautious.  相似文献   

8.
9.
RNA ligands to human nerve growth factor.   总被引:1,自引:1,他引:0       下载免费PDF全文
High affinity RNA ligands to human nerve growth factor (NGF) were selected from pools of random RNA using SELEX [Tuerk, C. and Gold, L. (1990) Science, 249, 505-510]. Nerve growth factor, which is a protein required for the development of neurons, is not known to bind nucleic acids as part of its natural function. We describe two of the selected RNA molecules in detail. One of them is highly structured, folding into a pseudoknot with an additional hairpin-loop; this structure provides salt-resistant binding to NGF. The other is unstructured and elevated salt concentrations inhibit its binding. These molecules compete with each other for NGF binding. Our RNAs may furnish useful diagnostic tools for the study of an important neurotrophic protein; additionally, they illustrate another example of the potential for nucleic acids to take part in novel binding interactions.  相似文献   

10.
During the past decade, synthetic nucleobase oligomers have found wide use in biochemical sciences, biotechnology and molecular medicine, both as research and/or diagnostic tools and as therapeutics. Numerous applications of common and modified oligonucleotides and oligonucleotide mimics rely on their ability to sequence-specifically recognize nucleic acid targets (DNA or RNA) by forming duplexes or triplexes. In general, these applications would benefit significantly from enhanced binding affinities of nucleobase oligomers in the formation of various secondary structures. However, for high-affinity probes, the selectivity of sequence recognition must also be improved to avoid undesirable associations with mismatched DNA and RNA sites. Here, we review recent progress in understanding the molecular mechanisms of nucleic acid interactions and the development of new high-affinity plus high-specificity oligonucleotides and their mimics, with particular emphasis on peptide nucleic acids.  相似文献   

11.
Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail.  相似文献   

12.
13.
Abstract

Cationic lipid-nucleic acid complexes are widely used to deliver oligonucleotides, RNA and DNA into cells. Although much has been learned about the structure and forces that hold the complex together, an understanding of the mechanism of release of the nucleic acids from the complex into cells has been lacking. Recent studies have shown that anionic liposomes with compositions similar to the cytoplasmic face of the endosomal membrane are potent agents for inducing the rapid release of oligonucleotides and DNA from cationic lipid-nucleic acid complexes. Based upon these results, we propose that after the cationic lipid/nucleic complex is internalized by endocytosis it destabilizes the endosomal membrane. This destabilization induces flip-flop of anionic lipids from the cytoplasmic facing monolayer, which laterally diffuse into the complex and form a charge neutral ion-pair with the cationic lipids. This results in displacement of the nucleic acid from the cationic lipid and subsequent release of the nucleic acid into cytoplasm of the cell. We review the data that show the proposed mechanism accounts for a variety of observations on cationic lipid/nucleic acid complex-cell interactions.  相似文献   

14.
15.
Nucleoside triphosphate phosphohydrolase [EC 3.6.1.15] activity was found to be included in silkworm cytoplasmic polyhedrosis (CP) virus, which synthesizes mRNA carrying the 5'-terminal modification. This enzyme releases orthophosphate from the gamma-position in a nucleoside triphosphate, leaving nucleoside diphosphate. The rate of hydrolysis of ATP is faster than that of any other ribonucleoside triphosphate. Deoxy ATP is hydrolyzed rather faster than ATP. However, polynucleotides carrying triphosphate at the 5'-terminus, that is, 4S RNA which was synthesized by E. coli RNA polymerase [EC 2.7.7.6] using calf thymus DNA as a template, and the phage Q beta RNA (30S), are not effective substrates for this enzyme. Although the CP virion loses the viral genome and one kind of protein component on proteolytic treatment with pronase, the partially degraded virion still retains phosphohydrolase activity. The phosphohydrolase must therefore be associated firmly with the virion. This enzyme does not require the presence of nucleic acid for its function. Phosphohydrolysis of ATP by this enzyme activity represents a first step in the synthesis of the 5'-terminal modified mRNA of CP virus.  相似文献   

16.
17.
L1 is a ubiquitous interspersed repeated sequence in mammals that achieved its high copy number by autonomous retrotransposition. Individual L1 elements within a genome differ in sequence and retrotransposition activity. Retrotransposition requires two L1-encoded proteins, ORF1p and ORF2p. Chimeric elements were used to map a 15-fold difference in retrotransposition efficiency between two L1 variants from the mouse genome, T(FC) and T(Fspa), to a single amino acid substitution in ORF1p, D159H. The steady-state levels of L1 RNA and protein do not differ significantly between these two elements, yet new insertions are detected earlier and at higher frequency in T(FC), indicating that it converts expressed L1 intermediates more effectively into new insertions. The two ORF1 proteins were purified and their nucleic acid binding and chaperone activities were examined in vitro. Although the RNA and DNA oligonucleotide binding affinities of these two ORF1 proteins were largely indistinguishable, D159 was significantly more effective as a nucleic acid chaperone than H159. These findings support a requirement for ORF1p nucleic acid chaperone activity at a late step during L1 retrotransposition, extend the region of ORF1p that is known to be critical for its functional interactions with nucleic acids, and enhance understanding of nucleic acid chaperone activity.  相似文献   

18.
Piwi-interacting piRNAs are a major and essential class of small RNAs in the animal germ cells with a prominent role in transposon control. Efficient piRNA biogenesis and function require a cohort of proteins conserved throughout the animal kingdom. Here we studied Maelstrom (MAEL), which is essential for piRNA biogenesis and germ cell differentiation in flies and mice. MAEL contains a high mobility group (HMG)-box domain and a Maelstrom-specific domain with a presumptive RNase H-fold. We employed a combination of sequence analyses, structural and biochemical approaches to evaluate and compare nucleic acid binding of mouse MAEL HMG-box to that of canonical HMG-box domain proteins (SRY and HMGB1a). MAEL HMG-box failed to bind double-stranded (ds)DNA but bound to structured RNA. We also identified important roles of a novel cluster of arginine residues in MAEL HMG-box in these interactions. Cumulatively, our results suggest that the MAEL HMG-box domain may contribute to MAEL function in selective processing of retrotransposon RNA into piRNAs. In this regard, a cellular role of MAEL HMG-box domain is reminiscent of that of HMGB1 as a sentinel of immunogenic nucleic acids in the innate immune response.  相似文献   

19.
Reovirus nonstructural protein sigmaNS interacts with reovirus plus-strand RNAs in infected cells, but little is known about the nature of those interactions or their roles in viral replication. In this study, a recombinant form of sigmaNS was analyzed for in vitro binding to nucleic acids using gel mobility shift assays. Multiple units of sigmaNS bound to single-stranded RNA molecules with positive cooperativity and with each unit covering about 25 nucleotides at saturation. The sigmaNS protein did not bind preferentially to reovirus RNA over nonreovirus RNA in competition experiments but did bind preferentially to single-stranded over double-stranded nucleic acids and with a slight preference for RNA over DNA. In addition, sigmaNS bound to single-stranded RNA to which a 19-base DNA oligonucleotide was hybridized at either end or near the middle. When present in saturative amounts, sigmaNS displaced this oligonucleotide from the partial duplex. The strand displacement activity did not require ATP hydrolysis and was inhibited by MgCl(2), distinguishing it from a classical ATP-dependent helicase. These properties of sigmaNS are similar to those of single-stranded DNA binding proteins that are known to participate in genomic DNA replication, suggesting a related role for sigmaNS in replication of the reovirus RNA genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号