首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PACAP, a VIP-like peptide, in neurons of the esophagus.   总被引:1,自引:0,他引:1  
The lower esophagus of guinea-pig, cat, sheep and man was analyzed for pituitary adenylate cyclase activating peptide (PACAP), a novel vasoactive intestinal peptide (VIP)-like peptide, using immunocytochemistry and radioimmunoassay. PACAP-immunoreactive nerve fibers were numerous in the longitudinal and circular muscle layers of sheep and man, moderate in numbers in cat, while being few in the esophagus of guinea-pig. A few PACAP-immunoreactive nerve cell bodies and numerous nerve fibers were seen in the myenteric ganglia of the esophagus of cat, sheep and man. In the lower esophagus of cat, sheep and man all PACAP-containing nerve cell bodies and nerve fibers stored VIP. The results of radioimmunoassay of PACAP in extracts of specimens from man were in good agreement with the immunocytochemical findings. High performance liquid chromatography revealed one major peak of PACAP-like immunoreactivity in extracts of human esophagus. We suggest that neuronal PACAP may serve to modulate motor activity and secretion in the lower esophageal sphincter region.  相似文献   

2.
The lower airways of guinea-pigs were analyzed for pituitary adenylate cyclase activating peptide (PACAP) using immunocytochemistry. In the trachea a moderate supply of PACAP-immunoreactive nerve fibers occurred around smooth muscle bundles, glands and small blood vessels. In the lung, PACAP-immunoreactive nerve fibers were distributed around small glands and bronchi. A rich supply of PACAP immunoreactive nerve fibers was found around blood vessels in the lungs. PACAP-suppressed smooth muscle responses were analysed using isolated circular segments of trachea, pulmonary arteries and aorta of guinea-pigs. In both airways and arteries PACAP caused a concentration-dependent relaxation of precontracted segments. The maximal relaxation effects were more pronounced in the airways than in the arteries while the order of potency was aorta greater than pulmonary artery greater than trachea. The effect of PACAP was compared to those of acetylcholine (ACh) and vasoactive intestinal peptide (VIP). In the pulmonary artery the vasomotor responses expressed as maximal dilatation had the order: ACh greater than VIP = PACAP while the order of potency was PACAP = VIP greater than ACh. In the trachea, PACAP was slightly more potent than VIP. The relaxatory responses to PACAP in the trachea and the intrapulmonary arteries were unaffected by pretreatment with atropine, prazosin, yohimbine, propranolol, mepyramine, cimetidine and Spantide. Removal of the endothelium abolished PACAP-induced vascular relaxation. Conceivably, PACAP-containing nerve fibers play a role in the regulation of airway resistance and local blood flow.  相似文献   

3.
This study was done to determine if pituitary adenylate cyclase-activating peptide (PACAP)-immunoreactive nerve fibers occur in cardiac muscle as well as intracardiac ganglia of rats and guinea pigs and to clarify the chronotropic actions of PACAP27 in the same species using isolated heart preparations. PACAP nerve fibers were not detected in atrial or ventricular muscle of rat or guinea pig but a few stained nerve fibers occurred in the atrioventricular bundle of the guinea pig. Stained nerve fibers were prominent in intracardiac ganglia of both species. PACAP27 caused a dose-dependent tachycardia in isolated rat hearts (+39 +/- 3 beats/min with 1 nmol, n = 6). Positive and/or negative chronotropic responses were evoked by PACAP27 in guinea pig heart, depending on dose and prior exposure to the peptide. PACAP27 also caused arrhythmias in several guinea pig hearts. Treatment with atropine eliminated or prevented PACAP-evoked bradycardia and arrhythmias, implicating cholinergic neurons in these responses. Positive chronotropic responses to PACAP were unaffected by beta-adrenergic receptor blockade in either species, suggesting that tachycardia resulted from a direct action on the heart. These observations support the conclusion that endogenous PACAP could have a role in regulating parasympathetic input to the heart but through different mechanisms in rats versus guinea pigs. A direct positive chronotropic influence of endogenous PACAP is unlikely since atrial muscle lacks PACAP-immunoreactive nerve fibers.  相似文献   

4.
Pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibres were demonstrated in the rat pineal gland. These fibres entered the pineal gland through the conarian nerve at the distal tip of the gland. A high density of the fibres was observed in the capsule of the gland, from where the immunoreactive elements penetrated into the pineal perivascular spaces and parenchyma. The majority of PACAP-immunoreactive nerve fibres also contained calcitonin gene-related peptide (CGRP). Some PACAP-immunoreactive nerve fibres contained neuropeptide Y (NPY), but only occasionally was PACAP colocalized with vasoactive intestinal peptide (VIP). After removal of both superior cervical ganglia, a high number of PACAP-containing nerve fibres were still present in the gland. In the nervous system PACAP is present in two isoforms, PACAP-38 and PACAP-27. The concentration of PACAP-38 in the superficial pineal gland was determined by radioimmunoassay to be 20.4 pmol/g tissue at midday and 18.9 pmol/g tissue at midnight. The concentration of PACAP-27 was only about 3% of the concentration of PACAP-38. In summary, this study is the first demonstration of a PACAP-containing innervation of the rat pineal gland. The PACAP concentration in the pineal gland does not exhibit a day-night difference. The colocalization of PACAP with calcitonin gene-related peptide in the pincalopetal nerve fibres indicates that the majority of PACAP-immunoreactive nerve fibres might originate from the trigeminal ganglion.  相似文献   

5.
Summary A novel neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), exhibits sequence homology with vasoactive intestinal polypeptide (VIP) and occurs in the mammalian brain, lung and gut. The distribution of PACAP in ganglionic and aganglionic portions of the large intestine of patients with Hirschsprung's disease was examined by immunohistochemistry and radioimmunoassay. PACAP-immunoreactive nerve fibers were distributed in all layers of the ganglionic and aganglionic segments of the intestine, although they were less numerous in the latter, and PACAP-immunoreactive nerve cell bodies were seen in the ganglionic portion of the intestine. The concentration of immunoreactive PACAP was lower in the aganglionic than in the ganglionic segment of the intestinal wall. PACAP and VIP were found to coexist in both ganglionic and aganglionic segments of the intestine. Apparently, PACAP participates in the regulation of gut motility. The scarcer PACAP innervation of the aganglionic segment may contribute to the defect in intestinal relaxation seen in patients with Hirschsprung's disease.  相似文献   

6.
The expression of pituitary adenylate cyclase activating polypeptide (PACAP) was studied in the gastrointestinal tract (GI-tract) of normal rats using radioimmunoassay, chromatography, immunocytochemistry, and in situ hybridization. PACAP-38, PACAP-27, and PACAP-related peptide were demonstrated in all parts of the GI-tract, PACAP-38 being the predominant form confirmed by chromatography. PACAP-immunoreactive nerve fibers and nerve cell bodies were found in the myenteric ganglia throughout the GI-tract. PACAP-containing nerve cell bodies were also demonstrated in the submucous ganglia of the small and large intestine. The synthesis of PACAP in intrinsic neurons was confirmed by in situ hybridization. Double immunostaining showed that PACAP is present in calcitonin gene-related peptide-containing sensory nerve fibers as well as in vasoactive intestinal polypeptide (VIP)- or VIP/gastrin-releasing peptide (GRP)-containing (intramural) nerve fibers in the upper GI-tract and in anally projecting, intrinsic VIP-and VIP/nitric oxide syntase-containing nerve cell bodies and nerve fibers in the small and large intestine. Neonatal treatment with capsaicin significantly reduced the concentration of PACAP-38 in the esophagus, stomach, and colon. Extrinsic denervation decreased the PACAP-38 concentration in the stomach, while no change was observed in the small intestine. These results indicate that PACAP- immunoreactive nerve fibers in the GI-tract originate from both intrinsic (enteric) and extrinsic (presumably sensory) sources suggesting that PACAP may have diverse gastrointestinal functions.  相似文献   

7.
Pituitary adenylate cyclase-activating peptide (PACAP) is a novel vasoactive intestinal peptide (VIP)-like peptide isolated from ovine hypothalamus. It is present in neuronal elements of a number of peripheral organs. We have examined whether PACAP occurs in the gill arch of Carassius auratus L. in which our recent studies have shown the presence of VIP-like peptide. Immunohistochemistry has revealed PACAP-like immunoreactivity in the anterior branches of the post-trematic glossopharyngeal and vagus nerves. PACAP-immunoreactive nerve cell bodies and fibers are present in connective tissue on the oral side of the gill arch. Colocalization studies carried out by the application of double immunofluorescence show that a PACAP-like peptide coexists with VIP in the same nerve cell bodies and fibers. The localization pattern of PACAP in the gill arch of goldfish suggests its possible involvement in the regulation of secretory activities.  相似文献   

8.
Pituitary adenylate cyclase activating polypeptide (PACAP), a member of the vasoactive intestinal polypeptide (VIP) family of peptides, is present in the brain and in neuronal elements of a number of peripheral organs. Since no information on PACAP in the mammary gland exists, we have investigated, by radioimmunoassay and immunohistochemistry, the occurrence and distribution of PACAP immunoreactivity in the mammary gland of lactating and non-lactating rats. A specific monoclonal mouse anti-PACAP antibody'has been used to show that the peptide is located in nerve fibres associated with bundles of circular and longitudinal smooth muscle surrounding the lactiferous duct of the nipple. PACAP-immunoreactive nerve fibres and nerve bundles are present in the subepidermal connective tissue of the nipple and in the mammary parenchyma, some of the fibres being in close contact with blood vessels. Occasionally, a few delicate varicose fibres are associated with secretory alveoli and lactiferous ducts. The majority of PACAP-positive nerve fibres are, however, located in the glabrous skin of the nipple and the hairy skin adjacent to the nipple forming a subepithelial plexus from which delicate varicose nerve fibres enter the overlying epithelium. Double immunostaining for PACAP and a marker for sensory neurons, calcitonin gene-related peptide, has disclosed that the two peptides are almost completely co-localized. A minor population of the PACAP-immunoreactive nerve fibres shows co-existence with VIP. Although no obvious changes at the immunohistochemical level could be observed during pregnancy or lactation, elevated concentrations of immunoreactive PACAP-38 in mammary extracts have been found during lactation. Our data suggest that PACAP is involved in the nervous control of mammary gland function, probably in the transmission of suckling stimuli.  相似文献   

9.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is the latest member of the vasoactive intestinal polypeptide (VIP) family of neuropeptides present in nerve fibres in many peripheral organs. Using double immunohistochemistry, with VIP as a marker for intrinsic innervation and calcitonin-gene related peptide (CGRP) as a marker for mainly extrinsic innervation, the distribution and localization of PACAP were studied in the rat pancreas. PACAP was demonstrated in nerve fibres in all compartments of the pancreas and in a subpopulation of intrapancreatic VIP-containing ganglion cells. PACAP and VIP were co-stored in intra- and interlobular nerve fibres innervating acini, blood vessels, and in nerve fibres within the islets of Langerhans. No PACAP immunoreactivity was observed in the islet cells. Another population of PACAP-immunoreactive nerve fibres co-localized with CGRP innervated ducts, blood vessels and acini. PACAP/CGRP-positive nerve fibres were also demonstrated within the islets. Neonatal capsaicin reduced the PACAP-38 concentration by approximately 50%, and accordingly a marked reduction in PACAP/CGRP-immunoreactive nerve fibres in the exocrine and endocrine pancreas was observed. Bilateral subdiaphragmatic vagotomy caused a slight but significant decrease in the PACAP-38 concentration compared with controls. In conclusion, PACAP-immunoreactive nerve fibres in the rat pancreas seem to have dual origin: extrinsic, most probably sensory fibres co-storing CGRP; and intrinsic, constituting a subpopulation of VIP-containing nerve cell bodies and fibres innervating acinar cells and islet cells. Our data provide a morphological basis for the reported effects of PACAP in the pancreas and suggest that PACAP-containing nerves in the rat pancreas may have both efferent and sensory functions.  相似文献   

10.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

11.
Summary Nerve fibres displaying immunoreactivity to calcitonin gene-related peptide (CGRP) are abundantly distributed in the respiratory tract of man, dog, cat, guineapig, rat and mouse. Numerous fine, beaded CGRP fibres were seen in the middle ear mucosa, and a moderate supply was found in the ear drum. In the nasal mucosa and in the wall of the Eustachian tube CGRP fibres occurred around blood vessels, arteries in particular. A conspiciously rich supply of CGRP fibres was seen beneath and within the epithelium. In addition, a few fibres were seen in smooth muscle bundles and close to sero-mucous glands. In the tracheo-bronchial wall CGRP fibres were distributed beneath and within the epithelium, in vascular and non-vascular smooth muscle and sometimes close to small glands. A few CGRP-immunoreactive endocrine-like cells were, in addition, distributed in the tracheal epithelium of cat, rat and mouse. The trigeminal, spinal and nodose ganglia, studied in rats and guinea-pigs, harboured numerous CGRP-immunoreactive nerve cell bodies. The cervical sympathetic ganglia were devoid of immunoreactive neuronal perikarya. Surgical and chemical (6-hydroxydopamine treatment) sympathectomy did not affect the number and distribution of CGRP fibres. The distribution of CGRP fibres in the respiratory tract suggests that CGRP may take part in sensory transmission. In addition, CGRP may affect the regulation of local blood flow, smooth muscle tone and glandular secretion.  相似文献   

12.
The airways of the guinea pig are richly innervated by peptide-containing nerve fibers. Among the most abundant neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are stored in nerve fibers located predominantly within and beneath the epithelium, and vasoactive intestinal peptide (VIP), which is located in fibers running mainly among smooth muscle bundles and seromucous glands. Sensory denervation (capsaicin treatment) of adult guinea pigs caused an almost total disappearance of CGRP- and SP-containing nerve fibers, while the density of VIP-containing nerve fibers located in smooth muscle seemed to increase. In the isolated trachea, perfused luminally, CGRP was found to appear in the intraluminal fluid after exposure to capsaicin but not after electrical vagal stimulation. CGRP concentrations in the tracheal wall did not change significantly. Luminally applied CGRP did not affect smooth muscle tension, measured as intraluminal volume changes.  相似文献   

13.
Pituitary adenylyl cyclase activating peptide (PACAP) is a novel hypothalamic peptide that is widely distributed in neurons, including those of the gastrointestinal tract. In this study, a polyclonal antiserum directed against PACAP-27 was used to investigate the localisation of PACAP throughout the gut and to determine the projections of PACAP-immunoreactive (IR) neurons in the guinea-pig small and large intestines. PACAP-IR fibres were seen in the myenteric and submucous plexuses, in the longitudinal and circular muscle layers and around blood vessels of the submucosa throughout the gut. In both the small and large intestine, PACAP-IR cell bodies, most with Dogiel type-I morphology, were seen in the myenteric ganglia following colchicine treatment. Lesion studies (myotomy and myectomy operations) revealed that PACAP-IR interneurons projected anally in the ileum and colon. Myectomy operations resulted in a loss of PACAP-IR fibres in the circular muscle under the operation, whereas PACAP-IR fibres remained in the submucosa and around blood vessels. Following extrinsic denervation of the ileum, the number of PACAP-IR fibres in the submucosal ganglia and around blood vessels decreased. This suggests that a portion of PACAP-IR fibres supplying the submucosal ganglia and blood vessels have an extrinsic source. To investigate this, immunohistochemical studies were performed on sympathetic and dorsal root ganglia. Numerous reactive cells were seen in the dorsal root ganglia, but none was seen in sympathetic pre- or paravertebral ganglia.  相似文献   

14.
The presence, distribution and colocalisation of pituitary adenylate cyclase activating peptide (PACAP) immunoreactivity have been studied in the duck ureter by using Western blot analysis, radioimmunoassays (RIA) and immunohistochemistry. The presence of both PACAP-38 and PACAP-27 was demonstrated, PACAP-38 being the predominant form. PACAP-immunoreactive fibres and neurons were found in all the ureteral layers. Double immunostaining showed that PACAP was almost completely colocalised with vasoactive intestinal peptide (VIP). Moreover, PACAP was found in substance P (SP)-containing ureteral nerve fibres and in SP-containing dorsal root ganglion neurons. RIA performed on denervated ureters demonstrated that almost half of the ureteral PACAP was extrinsic in origin. These findings suggest that, in birds, PACAP has a role in diverse nerve-mediated ureteral functions.  相似文献   

15.
地塞米松对哮喘豚鼠肺内VIP分布的影响   总被引:2,自引:0,他引:2  
为探讨哮喘豚鼠肺内血管活性肠肽(VIP)的分布及地塞米松对其分布的影响,将豚鼠随机分成哮喘组、地塞米松组和对照组三组,采用兔抗VIP多克隆血清,免疫组织化学ABC法和葡萄糖氧化酶-DAB-镍染色技术,发现对照豚鼠肺内各级气道壁均可见VIP免疫反应(VIP-IR)阳性纤维分布。在平滑肌层中,纤维成束走行,且有较多分枝;而在基底膜和气道上皮内,纤维成单根行走。随气道口径的变小,纤维分布密度也逐渐变小。哮喘豚鼠肺内VIP-IR消失。地塞米松处理后使VIP-IR部分恢复。上述结果提示,豚鼠经反复抗原攻击后,肺内VIP-IR阳性纤维消失,这在实验性哮喘的发生过程中可能起一定作用。  相似文献   

16.
By immunohistochemistry it was found that PHI- and VIP-like immunoreactivity (-IR) occurred in the same autonomic neurons in the upper respiratory tract, tongue and salivary glands with associated ganglia in rat, guinea-pig, cat, pig and man. VIP- and PHI-like immunoreactivity was also found in similar locations in the human heart. The N-terminally directed, but not the C-terminally directed, PHI antiserum or the VIP antiserum stained endocrine cells in the pig duodenum. This suggests the existence of an additional PHI-like peptide. Ligation of nerves acutely caused marked overlapping axonal accumulations of PHI- and VIP-IR central to the lesion. Two weeks after transection of the nerves, both types of immunoreactivities were still observed in accumulations both in the axons as well as in the corresponding cell bodies. The levels of PHI- and VIP-IR in normal tissues from the cat were around 10-50 pmol/g with a molar ratio of about 1 to 2. Systemic administrations of PHI and VIP induced hypotension, probably due to peripheral vasodilation in both guinea-pig and cat. Furthermore, both PHI and VIP caused an inhibition of the vagally induced increase in respiratory insufflation pressure in guinea-pig. PHI and VIP relaxed the guinea-pig trachea in vitro, suggesting a direct action on tracheobronchial smooth muscle. VIP was about 5-10 times more potent than PHI with regard to hypotensive effects and 2-3-fold, considering respiratory smooth muscle-relaxant effects in the guinea-pig. PHI was about 50-fold less potent to induce hypotension in the cat than in the guinea-pig. Although species differences seem to exist as regards biological potency, PHI should also be considered when examining the role of VIP as an autonomic neurotransmitter.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   

18.
Bioactive peptides have an important multifunctional role in the gastrointestinal tract. In the present study we have investigated the dynamism of the appearance of PACAP (pituitary adenylate cyclase activating polypeptide), VIP (vasoactive intestinal polypeptide), gastrin, and secretin immunoreactivities in human foregut derivates during the ontogenesis using an immunohistochemical approach. None of these peptides were observed in the foregut derivates of an 8-week-old embryo. VIP immunoreactive nerve fibers appeared by the 11th week in the smooth muscle layers of the stomach. No other peptide immunoreactivities were observed of this stage. In 18- and 20-week old fetuses PACAP, secretin, and gastrin immunoreactive cells appeared in the developing glands of the stomach. In the duodenum gastrin immunoreactivity was present in the Lieberkühn's glands and secretin immunoreactive cells were seen between the surface epithelial cells. In the pancreas secretin immunoreactivity was found in the Langerhans islets; however, PACAP immunreactivity was observed in the exocrine portion. The distribution of VIP fibers did not change during the fetal life and it was similar to the adult pattern. According to our results the appearance of PACAP, secretin, and gastrin in the developing glands suggests their role in the proliferation and differentiation of the epithelial derivates.  相似文献   

19.
In order to establish that the pineal gland is innervated by pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibers originating in the trigeminal ganglion, ophthalmic and maxillary nerves were transected by using a subtemporal fossa approach. The number of PACAP-immunoreactive nerve fibers in the pineal gland of rats with a total transection of the nerve was compared with that of rats without surgery. In the operated rat, PACAP-immunoreactive nerve fibers in the superficial pineal decreased remarkably, indicating that the trigeminal ganglion was the origin of these nerve fibers. This research provides evidence supporting the hypothesis that PACAP-immunoreactive nerves regulate the synthesis and/or secretion of melatonin in the pineal gland.  相似文献   

20.
Helospectin I and II are two non-amidated, VIP-like peptides, isolated from the salivary gland venom of the lizard Heloderma horridum. The lower esophagus of cat, sheep and man was analyzed for helospectin-like immunoreactivity.

Immunocytochemistry revealed helospectin-immunoreactive nerve fibers in the muscle layers, submucosa and mucosa of all species studied. In myenteric ganglia helospectin-immunoreactive nerve fibers and nerve cell bodies could be seen. Double immunostaining for helospectin and vasoactive intestinal peptide (VIP) revealed their coexistence in nerve fibers and cell bodies throughout the lower esophagus of all species tested. Double immunostaining for helospectin and neuropeptide Y revealed their coexistence in nerve fibres surrounding vascular and non-vascular smooth muscle. In the cat and sheep (but not in man) a subpopulation of the helospectin/VIP-containing fibers stored, in addition, substance P.

The helospectin-immunoreactive material in the esophagus probably constitutes a novel neuropeptide. The distribution of the VIP/helospectin-immunoreactive neurons and fibers indicates their possible involvement in the regulation of motor and secretory activities.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号