首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several phage hosts of group A streptococci became resistant to lysis by bacteriophage as a consequence of having acquired the ability to grow in the presence of chloramphenicol. The phage was adsorbed to the streptococcal cell, and P(32)-labeling of the phage showed that the phage genome penetrated the chloramphenicol (CM)- resistant cells as it did the parent cells. However, artificial lysis of the infected CM-resistant cells with chloroform or enzymes revealed no intracellular mature phage particles. Lysates of infected CM-resistant cells contained no phage-related antigenic materials which possessed serum-blocking power, although they were readily detected in lysates of infected parent cells. The CM-resistant cells were not lysogenized by the phage. Only cells resistant to more than 10 mug/ml of chloramphenicol were resistant to phage, and this threshold effect was taken as an indication of at least two different loci of chloramphenicol resistance on the streptococcal genome. Strains resistant to high levels of other antibiotics, such as streptomycin and erythromycin, showed no resistance to lysis by phage. Evidence indicated that the mutant cells were deficient in an essential function associated with the phage genome.  相似文献   

2.
The method for obtaining nonlysogenic bacteria from lysogenic ones by means of a phage carrying resistance to antibiotics is proposed. Solitary nonlysogenic cells in a lysogenic culture are lysogenized after the infection of the culture with a labeled phage and then harvested on a selective medium: under special conditions the phage is eliminated from the cells.  相似文献   

3.
A F Mosin 《Microbios》1978,20(80):125-131
The effects of chloramphenicol and cyanide on the increase in UV resistance of intracellular phage T1 infecting cells of E. coli B or E. coli Bs-1 were investigated. The inhibitiors were added to the cells 3 min prior to infection and to the complexes of phage-bacteria 3.5 and 6.5 min after adsorption of phage by the cells. The data obtained are not in agreement with the suggestion that increase in UV resistance of intracellular phage is mainly due to the accumulation of phage DNA inside the host cells. It is suggested that a very important role in this resistance is played by the interaction of phage DNA with the cell membranes.  相似文献   

4.
F. Turgeon  J. Devries  A. G. Thompson 《CMAJ》1965,92(19):1017-1020
The effect of mercury salts on 200 hospital strains of Staph. pyogenes was investigated. Two methods of performing the mercury inhibition test were compared, and the agar plate technique was found to be the more practical. An attempt was made to correlate the results of the test with antibiotic sensitivity tests, phage patterns and virulence tests. Resistance to mercury was found to be associated with antibiotic resistance, and the majority of the resistant strains were found in the lytic group III. No difference in virulence between mercury-resistant and mercury-sensitive strains could be demonstrated by intracerebral inoculation of mice. The mercury inhibition test may be useful as a screening test for “hospital staphylococci”.  相似文献   

5.
A mutant of Streptococcus cremoris strain ML1 was isolated based on its resistance to acriflavine. The mutant strain showed resistance to the growth of virulent bacteriophages to which the parental strain was sensitive whereas it became sensitive to a number of other virulent phages to which the parental strain was resistant. At the same time, infection of the mutant strain by another bacteriophage sc607 resulted in killing of cells without production of progeny phages. The phage adsorption appeared normal, suggesting that the killing was a postadsorption event. Such killing of bacterial cells was prevented by chloramphenicol treatment, indicating that involvement of some protein either synthesized by phage or phage-induced cellular protein. Synthesis of ribonucleic acid was abruptly terminated after infection of the mutant strain by phage sc607 but not of the parental strain. The alteration of host specificity in the mutant to different lytic bacteriophages and especially abortive infection by phage sc607 resembles the prophage-mediated interference observed in other bacteria.  相似文献   

6.
Competitive hybridization was used to detect the deletion of chromosomal DNA accompanying the loss of resistance to methicillin (and concomitantly, to cadmium, mercury and tetracycline) from a clinical strain of methicillin-resistant Staphylococcus aureus (MRSA). The method was also used to screen a partial plasmid library of chromosomal HindIII fragments from the MRSA strain. Eight recombinant plasmid clones were identified as containing DNA included in the deletion. These clones were used as probes to screen a phage library of the total DNA of the same MRSA strain, resulting in the isolation of overlapping recombinant phage clones carrying 24 kb of the deleted DNA. Two of the cloned HindIII fragments were associated closely with methicillin resistance, as shown by probing DNA from an independent methicillin-sensitive/resistant transduced strain pair and from two MRSA strains following growth in the presence of high concentrations of methicillin. The endonuclease map of the cloned DNA indicates the presence of four copies of a direct repeat less than 1 kb in size. The map is also consistent with the presence in the chromosome of sequences for mercury resistance (mer A mer B) and for tetracycline-resistance plasmid pT181.  相似文献   

7.
The resistance of methicillin-resistant staphylococci to phage 85 is due to the presence of a certain system restriction modification in microbial cells. The loss of the capacity for restricting phage DNA by the cell as the consequence of the loss of the mec determinant is not accompanied by the loss of its capacity for modifying phage DNA.  相似文献   

8.
All of 41 naturally occurring coagulase-positive methicillin-resistant strains of Staphylococcus aureus isolated in various laboratories were resistant to several antibiotics and were lipase-negative. Most strains produced hemolysins, and 38 strains produced enterotoxin B. Acriflavine treatment of four strains resulted in elimination of resistance to methicillin and mercury; in one strain, resistance to cadmium was also lost. Production of enterotoxin B and beta-hemolysin was eliminated in all four strains and penicillinase production was eliminated in one strain. In transduction experiments, methicillin resistance and enterotoxin B production were transferred together at a frequency of 0.2 x 10(-8) to 1.1 x 10(-8) by use of ultraviolet-induced phage lysates from naturally lysogenic methicillin-resistant strains. Cotransductions of resistance to mercury and cadmium, as well as production of penicillinase and beta-hemolysin, were obtained to some extent. The extrachromosomal character of these determinants and their possible genetic association are discussed.  相似文献   

9.
Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.  相似文献   

10.
The recipient capacity of the strains of Staph. epidermidis and Staph. areus belonging to different phage groups, as well as the possibility of epidemic distribution of the erythromycin resistance marker among the clinical staphyloccal strains on using the defective phage obtained from strain 8325 P IIde was studied. The defective phage P IIde may be the source of epidemic distribution of the drug resistance among the competent strains of Staph. aureus. All erythromycin sensitive strains of Staph. aureus lysed by the phages of groups I and III proved to be competent recipients of the erythromycin resistance marker. The strains of Staph. aureus of phage group II and phage type 80/81, as well as the strains of Staph. epidermidis were not competent recipients under our experimental conditions. It was not possible to transfer the high level of erythromycin resistance (1000 gamma/ml) on transduction to the strains of phage group I with a relatively low level of resistance to this antibiotic (20-50 gamma/ml.  相似文献   

11.
The X chromosome inactivation pattern in peripheral blood cells becomes more skewed after age 55, and a genetic effect on this age-related skewing has been reported. We investigated the effect of age on X inactivation phenotype in blood, buccal cells and tissue from duodenal biopsies in 80 females aged 19-90 years. The X inactivation pattern correlated positively with age in blood (r = 0.238, P = 0.034) and buccal cells (r = 0.260, P = 0.02). The mean degree of skewing was higher in the elderly (>/=55 years) than in the young (<55 years) in blood (70.1 and 63.5%, respectively, P = 0.013) and in buccal cells (64.7 and 59.0%, respectively, P = 0.004). Correlation of X inactivation between the different tissues was high in all tissues with a tendency to increase with age for blood and buccal cells (P = 0.082). None of the duodenal biopsies had a skewed X inactivation, and the mean degree of skewing was similar in the two age groups. The tendency for the same X chromosome to be the preferentially active X in both blood and buccal cells with advancing age is in agreement with a genetic effect on age-related skewing and indicates that genes other than those involved in hematopoiesis should be investigated in the search for genes contributing to age related skewing.  相似文献   

12.
During a period from 1978 to 1989, 413 Staphylococcus aureus strains were isolated at 27 different geographical regions in Hungary; they exhibited an inducible resistance to the 14-membered macrolides and streptogramin type B antibiotics, but not to the 16-membered macrolides and lincosamides: this resistance is referred to as PMS resistance phenotype. The isolates were mostly associated with patients suffering from staphylococcal diseases and with hygienic screenings in hospitals and closed communities. They were rarely isolated from food-poisoning cases, food hygienic screenings, or animal sources. Strains with PMS resistance phenotype were resistant to penicillin (99.0%), tetracycline (78.7%), and chloramphenicol (63.0%); however, they were susceptible to oxacillin. Most of them (94.2%) belonged to the phage type 52-complex. The determinant for PMS phenotype was located on plasmids, which also encoded beta-lactamase production and cadmium ion resistance, but not arsenate resistance. Three types of plasmid with molecular size of 50 kilobases (kb), 23.8 kb, and 16.8 kb, were found among the strains with PMS resistance phenotype, and the 50 kb and 23.8 kb plasmids also encoded mercury resistance. The 16.8 kb and 23.8 kb plasmids belonged to incompatibility group 1.  相似文献   

13.
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments.

Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.  相似文献   

14.
The evolution of resistance to parasites is fundamentally important to disease ecology, yet we remain unable to predict when and how resistance will evolve. This is largely due to the context‐dependent nature of host‐parasite interactions, as the benefit of resistance will depend on the abiotic and biotic environment. Through experimental evolution of the plant pathogenic bacterium Pseudomonas syringae and two lytic bacteriophages across two different environments (high‐nutrient media and the tomato leaf apoplast), we demonstrate that de novo evolution of resistance is negligible in planta despite high levels of resistance evolution in vitro. We find no evidence supporting the evolution of phage‐selected resistance in planta despite multiple passaging experiments, multiple assays for resistance, and high multiplicities of infection. Additionally, we find that phage‐resistant mutants (evolved in vitro) did not realize a fitness benefit over phage‐sensitive cells when grown in planta in the presence of phage, despite reduced growth of sensitive cells, evidence of phage replication in planta, and a large fitness benefit in the presence of phage observed in vitro. Thus, this context‐dependent benefit of phage resistance led to different evolutionary outcomes across environments. These results underscore the importance of studying the evolution of parasite resistance in ecologically relevant environments.  相似文献   

15.
16.
The lactococcal plasmid pNP40 mediates insensitivity to (phi)c2 by an early-acting phage resistance mechanism in addition to the previously identified abortive infection system, AbiF, in the Lactococcus lactis subsp. lactis MG1614 background. A second abortive infection determinant on pNP40, AbiE, does not confer resistance to (phi)c2. The early-acting mechanism on pNP40 does not prevent phage adsorption nor does it appear to operate by restriction/modification. Phage DNA was not detected in pNP40-containing cells until 30 min following exposure to (phi)c2 compared with 5 min in a sensitive host; however, electroporation of phage DNA into resistant hosts resulted in the release of phage progeny from a dramatically elevated number of cells compared with conventionally infected hosts. It appears therefore that pNP40 encodes a novel phage resistance mechanism which blocks DNA penetration specifically for (phi)c2.  相似文献   

17.
To elucidate the role of protein synthesis in DNA formation, E. coli R2 infected with phage T2 was studied as a model, employing chloramphenicol to inhibit protein synthesis. The following results were obtained. 1. Chloramphenicol inhibited protein synthesis but not synthesis of nucleic acids in uninfected bacteria. 2. Studies of the effect of chloramphenicol on phage maturation indicated a delay of 2 minutes between time of addition and cessation of phage growth. 3. The increase of DNA in phage-infected bacteria was completely suppressed by the addition of chloramphenicol within 2 minutes following infection. Addition at later times showed progressively less inhibitory action depending upon the time interval, and addition after the 10th or 12th minute showed no appreciable effect on DNA synthesis despite the cessation of intracellular phage formation and protein synthesis. 4. When chloramphenicol was added to infected cells the increase of resistance to UV stopped within 2 minutes, whether or not DNA synthesis continued. Thus evolution of resistance paralleled the rate of DNA synthesis achieved, but not the amount of DNA accumulated. 5. We conclude that in infected bacteria, protein synthesis is necessary to initiate DNA synthesis but is not essential for its continuation. The resistance to UV that characterizes infected cells near the midpoint of the latent period is not due to accumulation of DNA, but depends on some chloramphenicol-sensitive process (probably protein synthesis) completed at about the time the rate of DNA synthesis becomes maximal.  相似文献   

18.
The emergence of phage-resistant cells is the most serious problem for realizing phage therapy and is observed frequently if only one phage strain is used against a particular bacterium. By contrast, using multiple phages (phage cocktail) can delay or control the appearance of phage-resistant cells. Anaerobic continuous culturing of Escherichia coli O157:H7 and a cocktail of EP16, PP17, and SP22 phages were conducted. Comparison of the restriction fragment length polymorphism (RFLP) pattern of each phage genome showed a pattern different from wild type. Furthermore, the RFLP pattern of mutant phages consisted of fragments of PP17 and SP22 genome, suggesting both phages had infected the same host simultaneously (superinfection) and exchanged genomic DNA. Through observation of the binding of SYBR Gold-stained mutant phage to individual phage-resistant cells (RC), we found that clonal RC cultures were heterogeneous in their ability to bind mutant phage. The ratio of susceptibility was a few percent, which suggested that a minority of the RC population was susceptible to phage, and this heterogeneity contributes to the stable coexistence of RC and chimeric phages. The ratio of susceptible cells did not change appreciably from bacterial generation to generation.  相似文献   

19.
Mercury resistance in a plasmid-bearing strain of Escherichia coli   总被引:33,自引:13,他引:20       下载免费PDF全文
A strain of Escherichia coli carrying genes determining mercury resistance on a naturally occurring resistance transfer factor (RTF) converts 95% of 10(-5)m Hg(2+) (chloride) to metallic mercury at a rate of 4 to 5 nmoles of Hg(2+) per min per 10(8) cells. The metallic mercury is rapidly eliminated from the culture medium as mercury vapor. The volatilizing activity has a temperature dependence and heat sensitivity characteristic of enzymatic catalysis and is inducible by mercuric chloride. Ag(+) and Au(3+) are markedly inhibitory of mercury volatilization.  相似文献   

20.
The bfe locus codes for the cell surface receptor for vitamin B12, the E colicins, and bacteriophage BF23 in the Escherichia coli outer membrane. When the bfe+ allele, which is closely linked to the argH locus, was introduced into an argH bfe recipient by conjugation, arg+ recombinant cells rapidly and simultaneously acquired sensitivity to colicin E3 and phage BF23. In the reciprocal experiment introducing bfe into an argH bfe+ recipient, it was found that colicin E3-resistant, arg+ cells began to appear shortly after the arg+ recombinant population began to divide. This was far earlier than would have been predicted on the basis of 220 receptors per haploid cell. Moreover, there was a lag between the appearance of colicin resistance and the appearance of resistance to killing by phage BF23, and hence a period of time during which some arg+ recombinant cells were sensitive to the phage but resistant to the colicin. Colicin E3 added to cells during this period of time protected against phage killing, indicating that the colicin-resistant cells still had receptors capable of binding colicin on their surface. The modification of the phenotypic expression of colicin and phage resistance by inhibitors of deoxyribonucleic acid, ribonucleic acid, and protein synthesis was also investigated. The results obtained indicate that the receptor protein coded for by the bfe locus can exist on the cell surface in several different functional states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号