首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational modifications enable extra layers of control of the proteome, and perhaps the most important is proteolysis, a major irreversible modification affecting every protein. The intersection of the protease web with a proteome sculpts that proteome, dynamically modifying its state and function. Protease expression is distorted in cancer, so perturbing signaling pathways and the secretome of the tumor and reactive stromal cells. Indeed many cancer biomarkers are stable proteolytic fragments. It is crucial to determine which proteases contribute to the pathology versus their roles in homeostasis and in mitigating cancer. Thus the full substrate repertoire of a protease, termed the substrate degradome, must be deciphered to define protease function and to identify drug targets. Degradomics has been used to identify many substrates of matrix metalloproteinases that are important proteases in cancer. Here we review recent degradomics technologies that allow for the broadly applicable identification and quantification of proteases (the protease degradome) and their activity state, substrates, and interactors. Quantitative proteomics using stable isotope labeling, such as ICAT, isobaric tags for relative and absolute quantification (iTRAQ), and stable isotope labeling by amino acids in cell culture (SILAC), can reveal protease substrates by taking advantage of the natural compartmentalization of membrane proteins that are shed into the extracellular space. Identifying the actual cleavage sites in a complex proteome relies on positional proteomics and utilizes selection strategies to enrich for protease-generated neo-N termini of proteins. In so doing, important functional information is generated. Finally protease substrates and interactors can be identified by interactomics based on affinity purification of protease complexes using exosite scanning and inactive catalytic domain capture strategies followed by mass spectrometry analysis. At the global level, the N terminome analysis of whole communities of proteases in tissues and organs in vivo provides a full scale understanding of the protease web and the web-sculpted proteome, so defining metadegradomics.  相似文献   

2.
Activity-based probes (ABPs) have found increasing use in functional proteomics studies. Recently, ABPs that can be employed in combination with click chemistry gained particular attention due to their flexible application in vitro and in vivo. Moreover, there is a continuous need for new ABPs that target small subsets of enzymes. We here report novel clickable ABPs based on the 4-chloro-isocoumarin (IC) electrophile, a mechanism-based inhibitor scaffold that covalently binds serine proteases. We describe the synthesis of a small library of IC ABPs containing an alkyne function and a set of diverse selectivity elements. The different substituents on the IC structure determine which proteases are bound, showing good correlation with the preferred substrate preferences. The IC ABPs can detect their target proteases in a proteome background in a sensitive manner (down to 0.007% of total protein). Furthermore, we show activity-dependent and selective labeling of endogenous proteases in a tissue proteome. These ICs therefore represent a valuable extension to already existing ABPs for serine proteases and may be instrumental in future elucidation of serine protease functions.  相似文献   

3.
Several mass spectrometry-driven techniques allow to map the substrate repertoires and specificities of proteases. These techniques typically yield long lists of protease substrates and processed sites with (potential) physiological relevance, but in order to understand the primary function of a protease, it is important to discern bystander substrates from critical substrates. Because the former are generally processed with lower efficiency, data on the actual substrate cleavage efficiency could assist in categorizing protease substrates. In this study, quantitative mass spectrometry following metabolic proteome labeling (SILAC), combined with the isolation of N-terminal peptides by Combined Fractional Diagonal Chromatography, was used to monitor fluxes in the concentration of protease-generated neo-N-termini. In our experimental setup, a Jurkat cell lysate was treated with the human serine protease granzyme B (hGrB) for three different incubation periods. The extensive list of human granzyme B substrates previously catalogued by N-terminal Combined Fractional Diagonal Chromatography (1) was then used to assign 101 unique hGrB-specific neo-N-termini in 86 proteins. In this way, we were able to define several sites as getting efficiently cleaved in vitro and consequently recognize potential physiologically more relevant substrates. Among them the well-known hGrB substrate Bid was confirmed as being an efficient hGrB substrate next to several other potential regulators of hGrB induced apoptosis such as Bnip2 and Akap-8. Several of our proteomics results were further confirmed by substrate immunoblotting and by using peptide substrates incubated with human granzyme B.  相似文献   

4.
Proteolysis is an irreversible post-translational modification that regulates many intra- and intercellular processes, including essential go/no-go decisions during cell proliferation, development and cell death. Hundreds of protease-coding genes have been identified in plants, but few have been linked to specific substrates. Conversely, proteolytic processes are frequently observed in plant biology but rarely have they been ascribed to specific proteases. In mammalian systems, unbiased system-wide proteomics analyses of protease activities have recently been tremendously successful in the identification of protease substrate repertoires, also known as substrate degradomes. Knowledge of the substrate degradome is key to understand the role of proteases in vivo. Quantitative shotgun proteomic studies have been successful in identifying protease substrates, but while simple to perform they are biased toward abundant proteins and do not reveal precise cleavage sites. Current degradomics techniques overcome these limitations by focusing on the information-rich amino- and carboxy-terminal peptides of the original mature proteins and the protease-generated neo-termini. Targeted quantitative analysis of protein termini identifies precise cleavage sites in protease substrates with exquisite sensitivity and dynamic range in in vitro and in vivo systems. This review provides an overview of state-of-the-art methods for enrichment of protein terminal peptides, and their application to protease research. These emerging degradomics techniques promise to clarify the elusive biological roles of proteases and proteolysis in plants.  相似文献   

5.
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes – especially in conjunction with positron emission tomography – are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.  相似文献   

6.
Proteases are a family of proteolytically active enzymes whose dysfunction is implicated in a wide variety of human diseases. Although an estimated 2% of the human genome encodes for proteases, only a small fraction of these enzymes have well-characterized functions. Identification of the specificity and natural substrates of proteases in complex biological samples is challenging, but proteomic screens for proteases are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, fluorescent 2D difference gel electrophoresis with mass spectrometry, differential isotope labeling in combination with mass spectrometry, quantitative degradomics analysis of proteolytically generated neo-N-termini, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify protease specificity, cleavage sites and natural substrates with a particular focus on the cytotoxic lymphocyte granule serine proteases granzymes.  相似文献   

7.
The biological role of most proteases in vivo is largely unknown. Therefore, to develop robust techniques to analyze the protease degradome in cells and tissues and to elucidate their substrate degradomes we have developed a dedicated and complete human protease and inhibitor microarray that we have called the CLIP-CHIP Oligonucleotides (70-mers) for identifying all 715 human proteases, inactive homologs and inhibitors were spotted in triplicate onto glass slides with a dedicated subarray containing oligonucleotides for specific human breast carcinoma genes. Initial analyses revealed the elevated expression of a number of proteases in invasive ductal cell carcinoma including ADAMTS17, carboxypeptidases A5 and M, tryptase-gamma and matriptase-2. Matrix metalloproteinases (MMPs) showed a restricted expression pattern in both normal and cancerous breast tissues with most expressed at low levels. However, of the several MMPs expressed in significant quantities, the carcinoma samples showed only slightly elevated amounts other than for MMP-28 which was strongly elevated. To discover new protease substrates we developed a novel yeast two-hybrid approach we term 'inactive catalytic domain capture' (ICDC). Here, an inactive mutant protease catalytic domain lacking the propeptide was used as a yeast two hybrid bait to screen a human fibroblast cDNA library for interactor proteins as a substrate trap. Wnt-induced signaling protein-2 (WISP-2) was identified by ICDC and was biochemically confirmed as a new MMP substrate. In another approach we used isotope-coded affinity tag (ICAT) labeling with tandem mass spectrometry to quantitate the levels of secreted or shed extracellular proteins in MDA-MB-231 breast carcinoma cell cultures in the presence or absence of membrane type 1-MMP (MT1-MMP) overexpression. By this proteomic approach we identified and biochemically confirmed that IL-8, the serine protease inhibitor SLPI, the death receptor-6, pro-TNF-alpha and CTGF are novel substrates of MT1-MMP. The utility and quantitative nature of ICAT with MS/MS analysis as a new screen for protease substrate discovery based on detection of cleaved or shed substrate products should be readily adaptable to other classes of protease for assessing proteolytic function in a cellular context.  相似文献   

8.
Chondrocytes are widely used as an in vitro model of cartilage diseases such as osteoarthritis (OA). As the unique residents of mature cartilage, they are responsible of the synthesis and release of proteins essential for a proper tissue turnover. In this work, the stable isotope labeling with amino acids in cell culture (SILAC) technique has been standardized in primary human articular chondrocytes (HACs) for quantitative proteomic analyses. Then, it has been employed to study those protein modifications caused by the proinflammatory cytokine Interleukin-1beta (IL-1β), a well-known OA mediator, in these cells. Quantitative analysis of the IL-1β-treated HACs proteome revealed a global increase in cellular chaperones concurrent with a down-regulation of the actin cytoskeleton. HACs secretome analysis led to the identification and quantification of 115 proteins and unveiled the effects of the cytokine on the cartilage extracellular matrix metabolism. Among those modulated proteins, three protein clusters were found to be remarkably increased by IL-1β: proinflammatory mediators and proteases, type VI collagen and proteins known to bind this molecule, and proteins related with the TGF-beta pathway. On the other hand, secretion of aggrecan, two vitamin K-dependent proteins, and thrombospondin, among others, was strongly reduced. Altogether, these data demonstrate the usefulness of metabolic labeling for quantitative proteomics studies in HACs, show the complementarity of intracellular proteome and secretome analyses, and provide a comprehensive study of the IL-1β-mediated effects on these cells. Proteins identified in the secretome approach have a potential use as biomarkers or therapeutic targets for OA.  相似文献   

9.
10.
Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and non-cleaved proteins by peptide isotope quantification and bioinformatics search criteria.  相似文献   

11.
Dysfunction of protein turnover is a feature of many human diseases, and proteins are substrates in important biological processes. Currently, no method exists for the measurement of global protein turnover (i.e., proteome dynamics) that can be applied in humans. Here we describe the use of metabolic labeling with deuterium ((2)H) from (2)H(2)O and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of mass isotopomer patterns to measure protein turnover. We show that the positions available for (2)H label incorporation in vivo can be calculated using peptide sequence. The isotopic incorporation values calculated by combinatorial analysis of mass isotopomer patterns in peptides correlate very closely with values established for individual amino acids. Inpatient and outpatient heavy water labeling protocols resulted in (2)H label incorporation sufficient for reproducible quantitation in humans. Replacement rates were similar for peptides deriving from the same protein. Using a kinetic model to account for the time course of each individual's (2)H(2)O enrichment curves, dynamics of approximately 100 proteins with half-lives ranging from 0.4 to 40 days were measured using 8 μl of plasma. The measured rates were consistent with literature values. This method can be used to measure in vivo proteome homeostasis in humans in disease and during therapeutic interventions.  相似文献   

12.
ATP-dependent oligomeric proteases are major components of cellular protein quality control systems. To investigate the role of proteolytic processes in the maintenance of mitochondrial functions, we analyzed the dynamic behavior of the mitochondrial proteome of Saccharomyces cerevisiae by two-dimensional (2D) polyacrylamide gel electrophoresis. By a characterization of the influence of temperature on protein turnover in isolated mitochondria, we were able to define four groups of proteins showing a differential susceptibility to proteolysis. The protein Pim1/LON has been shown to be the main protease in the mitochondrial matrix responsible for the removal of damaged or nonnative proteins. To assess the substrate range of Pim1 under in vivo conditions, we performed a quantitative comparison of the 2D protein spot patterns between wild-type and pim1Delta mitochondria. We were able to identify a novel subset of mitochondrial proteins that are putative endogenous substrates of Pim1. Using an in organello degradation assay, we confirmed the Pim1-specific, ATP-dependent proteolysis of the newly identified substrate proteins. We could demonstrate that the functional integrity of the Pim1 substrate proteins, in particular, the presence of intact prosthetic groups, had a major influence on the susceptibility to proteolysis.  相似文献   

13.
Identification of protease substrates and detailed characterization of processed sites are essential for understanding the biological function of proteases. Because of inherent complexity reasons, this however remains a formidable analytical challenge, illustrated by the fact that the majority of the more than 500 human proteases are uncharacterized to date. Recently, in addition to conventional genetic and biochemical approaches, diverse quantitative peptide-centric proteomics approaches, some of which selectively recover N-terminal peptides, have emerged. These latter proteomic technologies in particular allow the identification of natural protease substrates and delineation of cleavage sites in a complex, natural background of thousands of different proteins. We here review current biochemical, genetic and proteomic methods for global analysis of substrates of proteases and discuss selected applications.  相似文献   

14.
The use of multidimensional capillary HPLC combined with MS/MS has allowed high qualitative and quantitative proteome coverage of prokaryotic organisms. The determination of protein abundance change between two or more conditions has matured to the point that false discovery rates can be very low and for smaller proteomes coverage is sufficiently high to explicitly consider false negative error. Selected aspects of using these methods for global protein abundance assessments are reviewed. These include instrumental issues that influence the reliability of abundance ratios; a comparison of sources of nonlinearity, errors, and data compression in proteomics and spotted cDNA arrays; strengths and weaknesses of spectral counting versus stable isotope metabolic labeling; and a survey of microbiological applications of global abundance analysis at the protein level. Proteomic results for two organisms that have been studied extensively using these methods are reviewed in greater detail. Spectral counting and metabolic labeling data are compared and the utility of proteomics for global gene regulation studies are discussed for the methanogenic Archaeon Methanococcus maripaludis. The oral pathogen Porphyromonas gingivalis is discussed as an example of an organism where a large percentage of the proteome differs in relative abundance between the intracellular and extracellular phenotype.  相似文献   

15.
Despite the increasing importance of heat shock protein 90 (Hsp90) inhibitors as chemotherapeutic agents in diseases such as cancer, their global effects on the proteome remain largely unknown. Here we use high resolution, quantitative mass spectrometry to map protein expression changes associated with the application of the Hsp90 inhibitor, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). In depth data obtained from five replicate SILAC experiments enabled accurate quantification of about 6,000 proteins in HeLa cells. As expected, we observed activation of a heat shock response with induced expression of molecular chaperones, which refold misfolded proteins, and proteases, which degrade irreparably damaged polypeptides. Despite the broad range of known Hsp90 substrates, bioinformatics analysis revealed that particular protein classes were preferentially affected. These prominently included proteins involved in the DNA damage response, as well as protein kinases and especially tyrosine kinases. We followed up on this observation with a quantitative phosphoproteomic analysis of about 4,000 sites, which revealed that Hsp90 inhibition leads to much more down- than up-regulation of the phosphoproteome (34% down versus 6% up). This study defines the cellular response to Hsp90 inhibition at the proteome level and sheds light on the mechanisms by which it can be used to target cancer cells.  相似文献   

16.
The substrate specificities of papain-like cysteine proteases (clan CA, family C1) papain, bromelain, and human cathepsins L, V, K, S, F, B, and five proteases of parasitic origin were studied using a completely diversified positional scanning synthetic combinatorial library. A bifunctional coumarin fluorophore was used that facilitated synthesis of the library and individual peptide substrates. The library has a total of 160,000 tetrapeptide substrate sequences completely randomizing each of the P1, P2, P3, and P4 positions with 20 amino acids. A microtiter plate assay format permitted a rapid determination of the specificity profile of each enzyme. Individual peptide substrates were then synthesized and tested for a quantitative determination of the specificity of the human cathepsins. Despite the conserved three-dimensional structure and similar substrate specificity of the enzymes studied, distinct amino acid preferences that differentiate each enzyme were identified. The specificities of cathepsins K and S partially match the cleavage site sequences in their physiological substrates. Capitalizing on its unique preference for proline and glycine at the P2 and P3 positions, respectively, selective substrates and a substrate-based inhibitor were developed for cathepsin K. A cluster analysis of the proteases based on the complete specificity profile provided a functional characterization distinct from standard sequence analysis. This approach provides useful information for developing selective chemical probes to study protease-related pathologies and physiologies.  相似文献   

17.
Various enzyme reactors and online enzyme digestion strategies have been developed in recent years. These reactors greatly enhanced the detection sensitivity and proteome coverage in qualitative proteomics. However, these devices have higher rates of miscleavage in protein digestion. Therefore, we investigated the effect of online enzyme digestion on the quantification accuracy of quantitative proteomics using chemical or metabolic isotope labeling approaches. The incomplete digestion would introduce some unexpected variations in comparative quantification when the samples are digested and then chemically isotope labeled in different aliquots. Even when identical protein aliquots are processed on these devices using post‐digestion chemical isotope labeling and the CVs of the ratios controlled to less than 50% in replicate analyses, about 10% of the quantified proteins have a ratio greater than two‐fold, whereas in theory the ratio is 1:1. Interestingly, the incomplete digestion with enzyme reactor is not a problem when metabolic isotope labeling samples were processed because the proteins are isotopically labeled in vivo prior to their simultaneous digestion within the reactor. Our results also demonstrated that both high quantification accuracy and high proteome coverage can be achieved in comparative proteome quantification using online enzyme digestion even when a limited amount of metabolic isotope labeling samples is used (1683 proteins comparatively quantified from 105 Hela cells).  相似文献   

18.
We present here a comprehensive analysis of proteases in the peptide substrate space and demonstrate its applicability for lead discovery. Aligned octapeptide substrates of 498 proteases taken from the MEROPS peptidase database were used for the in silico analysis. A multiple‐category naïve Bayes model, trained on the two‐dimensional chemical features of the substrates, was able to classify the substrates of 365 (73%) proteases and elucidate statistically significant chemical features for each of their specific substrate positions. The positional awareness of the method allows us to identify the most similar substrate positions between proteases. Our analysis reveals that proteases from different families, based on the traditional classification (aspartic, cysteine, serine, and metallo), could have substrates that differ at the cleavage site (P1–P1′) but are similar away from it. Caspase‐3 (cysteine protease) and granzyme B (serine protease) are previously known examples of cross‐family neighbors identified by this method. To assess whether peptide substrate similarity between unrelated proteases could reliably translate into the discovery of low molecular weight synthetic inhibitors, a lead discovery strategy was tested on two other cross‐family neighbors—namely cathepsin L2 and matrix metallo proteinase 9, and calpain 1 and pepsin A. For both these pairs, a naïve Bayes classifier model trained on inhibitors of one protease could successfully enrich those of its neighbor from a different family and vice versa, indicating that this approach could be prospectively applied to lead discovery for a novel protease target with no known synthetic inhibitors.  相似文献   

19.
Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using fluorescence polarization activity-based protein profiling (FluoPol ABPP) that is compatible with membrane proteases. With FluoPol ABPP, we identified new inhibitors for the E. coli rhomboid GlpG. Among these was a structural class that has not yet been reported as rhomboid inhibitors: β-lactones. They form covalent and irreversible complexes with the active site serine of GlpG. The presence of alkyne handles on the β-lactones also allowed activity-based labeling. Overall, these molecules represent a new scaffold for future inhibitor and activity-based probe development, whereas the assay will allow inhibitor screening of ill-characterized membrane proteases.  相似文献   

20.
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号