首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many biologists use population models that are spatial, stochastic and individual based. Analytical methods that describe the behaviour of these models approximately are attracting increasing interest as an alternative to expensive computer simulation. The methods can be employed for both prediction and fitting models to data. Recent work has extended existing (mean field) methods with the aim of accounting for the development of spatial correlations. A common feature is the use of closure approximations for truncating the set of evolution equations for summary statistics. We investigate an analytical approach for spatial and stochastic models where individuals interact according to a generic function of their distance; this extends previous methods for lattice models with interactions between close neighbours, such as the pair approximation. Our study also complements work by Bolker and Pacala (BP) [Theor. Pop. Biol. 52 (1997) 179; Am. Naturalist 153 (1999) 575]: it treats individuals as being spatially discrete (defined on a lattice) rather than as a continuous mass distribution; it tests the accuracy of different closure approximations over parameter space, including the additive moment closure (MC) used by BP and the Kirkwood approximation. The study is done in the context of an susceptible-infected-susceptible epidemic model with primary infection and with secondary infection represented by power-law interactions. MC is numerically unstable or inaccurate in parameter regions with low primary infection (or density-independent birth rates). A modified Kirkwood approximation gives stable and generally accurate transient and long-term solutions; we argue it can be applied to lattice and to continuous-space models as a substitute for MC. We derive a generalisation of the basic reproduction ratio, R(0), for spatial models.  相似文献   

2.
The invasion of new species and the spread of emergent infectious diseases in spatially structured populations has stimulated the study of explicit spatial models such as cellular automata, network models and lattice models. However, the analytic intractability of these models calls for the development of tractable mathematical approximations that can capture the dynamics of discrete, spatially-structured populations. Here we explore moment closure approximations for the invasion of an SIS epidemic on a regular lattice. We use moment closure methods to derive an expression for the basic reproductive number, R(0), in a lattice population. On lattices, R(0) should be bounded above by the number of neighbors per individual. However, we show that conventional pair approximations actually predict unbounded growth in R(0) with increasing transmission rates. To correct this problem, we propose an 'invasory' pair approximation which yields a relatively simple expression for R(0) that remains bounded above, and also predicts R(0) values from lattice model simulations more accurately than conventional pair and triple approximations. The invasory pair approximation is applicable to any spatial model, since it takes into account characteristics of invasions that are common to all spatially structured populations.  相似文献   

3.
The basic reproduction number, R0, of an infectious agent is a key factor determining the rate of spread and the proportion of the host population affected. We formulate a general mathematical framework to describe the transmission dynamics of long incubation period diseases with complex pathogenesis. This is used to derive expressions for R0 of bovine spongiform encephalopathy (BSE) in British cattle, and back-calculation methods are used to estimate R0 throughout the time-course of the BSE epidemic. We show that the 1988 meat and bonemeal ban was effective in rapidly reducing R0 below 1, and demonstrate that this indicates that BSE will be unable to become endemic in the UK cattle population even when case clustering is taken into account. The analysis provides some insight into absolute infectiousness for bovine-to-bovine transmission, indicating maximally infectious animals may have infected up to 400 animals each. The relationship between R0 and the early stages of the BSE epidemic and the requirements for additional research are also discussed.  相似文献   

4.
To predict the potential severity of outbreaks of infectious diseases such as SARS, HIV, TB and smallpox, a summary parameter, the basic reproduction number R(0), is generally calculated from a population-level model. R(0) specifies the average number of secondary infections caused by one infected individual during his/her entire infectious period at the start of an outbreak. R(0) is used to assess the severity of the outbreak, as well as the strength of the medical and/or behavioral interventions necessary for control. Conventionally, it is assumed that if R(0)>1 the outbreak generates an epidemic, and if R(0)<1 the outbreak becomes extinct. Here, we use computational and analytical methods to calculate the average number of secondary infections and to show that it does not necessarily represent an epidemic threshold parameter (as it has been generally assumed). Previously we have constructed a new type of individual-level model (ILM) and linked it with a population-level model. Our ILM generates the same temporal incidence and prevalence patterns as the population-level model; we use our ILM to directly calculate the average number of secondary infections (i.e., R(0)). Surprisingly, we find that this value of R(0) calculated from the ILM is very different from the epidemic threshold calculated from the population-level model. This occurs because many different individual-level processes can generate the same incidence and prevalence patterns. We show that obtaining R(0) from empirical contact tracing data collected by epidemiologists and using this R(0) as a threshold parameter for a population-level model could produce extremely misleading estimates of the infectiousness of the pathogen, the severity of an outbreak, and the strength of the medical and/or behavioral interventions necessary for control.  相似文献   

5.
Although its usefulness and possibility of the well-known definition of the basic reproduction number R0 for structured populations by Diekmann, Heesterbeek and Metz (J Math Biol 28:365-382, 1990) (the DHM definition) have been widely recognized mainly in the context of epidemic models, originally it deals with population dynamics in a constant environment, so it cannot be applied to formulate the threshold principle for population growth in time-heterogeneous environments. Since the mid-1990s, several authors proposed some ideas to extend the definition of R0 to the case of a periodic environment. In particular, the definition of R0 in a periodic environment by Baca?r and Guernaoui (J Math Biol 53:421-436, 2006) (the BG definition) is most important, because their definition of periodic R0 can be interpreted as the asymptotic per generation growth rate, which is an essential feature of the DHM definition. In this paper, we introduce a new definition of R0 based on the generation evolution operator (GEO), which has intuitively clear biological meaning and can be applied to structured populations in any heterogeneous environment. Using the generation evolution operator, we show that the DHM definition and the BG definition completely allow the generational interpretation and, in those two cases, the spectral radius of GEO equals the spectral radius of the next generation operator, so it gives the basic reproduction number. Hence the new definition is an extension of the DHM definition and the BG definition. Finally we prove a weak sign relation that if the average Malthusian parameter exists, it is nonnegative when R0>1 and it is nonpositive when R0<1.  相似文献   

6.
The first recorded North American epidemic of West Nile virus was detected in New York state in 1999, and since then the virus has spread and become established in much of North America. Mathematical models for this vector-transmitted disease with cross-infection between mosquitoes and birds have recently been formulated with the aim of predicting disease dynamics and evaluating possible control methods. We consider discrete and continuous time versions of the West Nile virus models proposed by Wonham et al. [Proc. R. Soc. Lond. B 271:501–507, 2004] and by Thomas and Urena [Math. Comput. Modell. 34:771–781, 2001], and evaluate the basic reproduction number as the spectral radius of the next-generation matrix in each case. The assumptions on mosquito-feeding efficiency are crucial for the basic reproduction number calculation. Differing assumptions lead to the conclusion from one model [Wonham, M.J. et al., [Proc. R. Soc. Lond. B] 271:501–507, 2004] that a reduction in bird density would exacerbate the epidemic, while the other model [Thomas, D.M., Urena, B., Math. Comput. Modell. 34:771–781, 2001] predicts the opposite: a reduction in bird density would help control the epidemic.  相似文献   

7.
We compare threshold results for the deterministic and stochastic versions of the homogeneous SI model with recruitment, death due to the disease, a background death rate, and transmission rate beta cXY/N. If an infective is introduced into a population of susceptibles, the basic reproduction number, R0, plays a fundamental role for both, though the threshold results differ somewhat. For the deterministic model, no epidemic can occur if R0 less than or equal to 1 and an epidemic occurs if R0 greater than 1. For the stochastic model we find that on average, no epidemic will occur if R0 less than or equal to 1. If R0 greater than 1, there is a finite probability, but less than 1, that an epidemic will develop and eventuate in an endemic quasi-equilibrium. However, there is also a finite probability of extinction of the infection, and the probability of extinction decreases as R0 increases above 1.  相似文献   

8.
One of the first quantities to be estimated at the start of an epidemic is the basic reproduction number, ${\mathcal{R}_0}$ . The progress of an epidemic is sensitive to the value of ${\mathcal{R}_0}$ , hence we need methods for exploring the consequences of uncertainty in the estimate. We begin with an analysis of the SIR model, with ${\mathcal{R}_0}$ specified by a probability distribution instead of a single value. We derive probability distributions for the prevalence and incidence of infection during the initial exponential phase, the peaks in prevalence and incidence and their timing, and the final size of the epidemic. Then, by expanding the state variables in orthogonal polynomials in uncertainty space, we construct a set of deterministic equations for the distribution of the solution throughout the time-course of the epidemic. The resulting dynamical system need only be solved once to produce a deterministic stochastic solution. The method is illustrated with ${\mathcal{R}_0}$ specified by uniform, beta and normal distributions. We then apply the method to data from the New Zealand epidemic of H1N1 influenza in 2009. We apply the polynomial expansion method to a Kermack–McKendrick model, to simulate a forecasting system that could be used in real time. The results demonstrate the level of uncertainty when making parameter estimates and projections based on a limited amount of data, as would be the case during the initial stages of an epidemic. In solving both problems we demonstrate how the dynamical system is derived automatically via recurrence relationships, then solved numerically.  相似文献   

9.
In epidemiological models of infectious diseases the basic reproduction number is used as a threshold parameter to determine the threshold between disease extinction and outbreak. A graph-theoretic form of Gaussian elimination using digraph reduction is derived and an algorithm given for calculating the basic reproduction number in continuous time epidemiological models. Examples illustrate how this method can be applied to compartmental models of infectious diseases modelled by a system of ordinary differential equations. We also show with these examples how lower bounds for can be obtained from the digraphs in the reduction process.  相似文献   

10.
We study the final size equation for an epidemic in a subdivided population with general mixing patterns among subgroups. The equation is determined by a matrix with the same spectrum as the next generation matrix and it exhibits a threshold controlled by the common dominant eigenvalue, the basic reproduction number R0{\mathcal{R}_{0}}: There is a unique positive solution giving the size of the epidemic if and only if R0{\mathcal{R}_{0}} exceeds unity. When mixing heterogeneities arise only from variation in contact rates and proportionate mixing, the final size of the epidemic in a heterogeneously mixing population is always smaller than that in a homogeneously mixing population with the same basic reproduction number R0{\mathcal{R}_{0}}. For other mixing patterns, the relation may be reversed.  相似文献   

11.
The initial exponential growth rate of an epidemic is an important measure of disease spread, and is commonly used to infer the basic reproduction number $\mathcal{R}_{0}$ . While modern techniques (e.g., MCMC and particle filtering) for parameter estimation of mechanistic models have gained popularity, maximum likelihood fitting of phenomenological models remains important due to its simplicity, to the difficulty of using modern methods in the context of limited data, and to the fact that there is not always enough information available to choose an appropriate mechanistic model. However, it is often not clear which phenomenological model is appropriate for a given dataset. We compare the performance of four commonly used phenomenological models (exponential, Richards, logistic, and delayed logistic) in estimating initial epidemic growth rates by maximum likelihood, by fitting them to simulated epidemics with known parameters. For incidence data, both the logistic model and the Richards model yield accurate point estimates for fitting windows up to the epidemic peak. When observation errors are small, the Richards model yields confidence intervals with better coverage. For mortality data, the Richards model and the delayed logistic model yield the best growth rate estimates. We also investigate the width and coverage of the confidence intervals corresponding to these fits.  相似文献   

12.
The basic reproductive ratio, R0, is a central quantity in the investigation and management of infectious pathogens. The standard model for describing stochastic epidemics is the continuous time epidemic birth-and-death process. The incidence data used to fit this model tend to be collected in discrete units (days, weeks, etc.), which makes model fitting, and estimation of R0 difficult. Discrete time epidemic models better match the time scale of data collection but make simplistic assumptions about the stochastic epidemic process. By investigating the nature of the assumptions of a discrete time epidemic model, we derive a bias corrected maximum likelihood estimate of R0 based on the chain binomial model. The resulting 'removal' estimators provide estimates of R0 and the initial susceptible population size from time series of infectious case counts. We illustrate the performance of the estimators on both simulated data and real epidemics. Lastly, we discuss methods to address data collected with observation error.  相似文献   

13.
Two closely related stochastic models of parasitic infection are investigated: a non-linear model, where density dependent constraints are included, and a linear model appropriate to the initial behaviour of an epidemic. Host-mortality is included in both models. These models are appropriate to transmission between homogeneously mixing hosts, where the amount of infection which is transferred from one host to another at a single contact depends on the number of parasites in the infecting host. In both models, the basic reproduction ratio R0 can be defined to be the lifetime expected number of offspring of an adult parasite under ideal conditions, but it does not necessarily contain the information needed to separate growth from extinction of infection. In fact we find three regions for a certain parameter where different combinations of parameters determine the behavior of the models. The proofs involve martingale and coupling methods.  相似文献   

14.
We present a susceptibles-exposed-infectives (SEI) model to analyze the effects of seasonality on epidemics, mainly of rabies, in a wide range of wildlife species. Model parameters are cast as simple allometric functions of host body size. Via nonlinear analysis, we investigate the dynamical behavior of the disease for different levels of seasonality in the transmission rate and for different values of the pathogen basic reproduction number (R(0)) over a broad range of body sizes. While the unforced SEI model exhibits long-term epizootic cycles only for large values of R(0), the seasonal model exhibits multiyear periodicity for small values of R(0). The oscillation period predicted by the seasonal model is consistent with those observed in the field for different host species. These conclusions are not affected by alternative assumptions for the shape of seasonality or for the parameters that exhibit seasonal variations. However, the introduction of host immunity (which occurs for rabies in some species and is typical of many other wildlife diseases) significantly modifies the epidemic dynamics; in this case, multiyear cycling requires a large level of seasonal forcing. Our analysis suggests that the explicit inclusion of periodic forcing in models of wildlife disease may be crucial to correctly describe the epidemics of wildlife that live in strongly seasonal environments.  相似文献   

15.
Understanding the effect of edge removal on the basic reproduction number ${\mathcal{R}_0}$ for disease spread on contact networks is important for disease management. The formula for the basic reproduction number ${\mathcal{R}_0}$ in random network SIR models of configuration type suggests that for degree distributions with large variance, a reduction of the average degree may actually increase ${\mathcal{R}_0}$ . To understand this phenomenon, we develop a dynamical model for the evolution of the degree distribution under random edge removal, and show that truly random removal always reduces ${\mathcal{R}_0}$ . The discrepancy implies that any increase in ${\mathcal{R}_0}$ must result from edge removal changing the network type, invalidating the use of the basic reproduction number formula for a random contact network. We further develop an epidemic model incorporating a contact network consisting of two groups of nodes with random intra- and inter-group connections, and derive its basic reproduction number. We then prove that random edge removal within either group, and between groups, always decreases the appropriately defined ${\mathcal{R}_0}$ . Our models also allow an estimation of the number of edges that need to be removed in order to curtail an epidemic.  相似文献   

16.
In this paper we consider an age-duration-structured population model for HIV infection in a homosexual community. First we investigate the invasion problem to establish the basic reproduction ratio R(0) for the HIV/AIDS epidemic by which we can state the threshold criteria: The disease can invade into the completely susceptible population if R(0)>1, whereas it cannot if R(0)<1. Subsequently, we examine existence and uniqueness of endemic steady states. We will show sufficient conditions for a backward or a forward bifurcation to occur when the basic reproduction ratio crosses unity. That is, in contrast with classical epidemic models, for our HIV model there could exist multiple endemic steady states even if R(0) is less than one. Finally, we show sufficient conditions for the local stability of the endemic steady states.  相似文献   

17.
A mathematical model that describes HIV infection of CD4(+) T cells is analyzed. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number R(0) < or = 1, the HIV infection is cleared from the T-cell population; if R(0) > 1, the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium P* can be unstable and periodic solutions may exist. We establish parameter regions for which P* is globally stable.  相似文献   

18.
We study the SIS and SIRI epidemic models discussing different approaches to compute the thresholds that determine the appearance of an epidemic disease. The stochastic SIS model is a well known mathematical model, studied in several contexts. Here, we present recursively derivations of the dynamic equations for all the moments and we derive the stationary states of the state variables using the moment closure method. We observe that the steady states give a good approximation of the quasi-stationary states of the SIS model. We present the relation between the SIS stochastic model and the contact process introducing creation and annihilation operators. For the spatial stochastic epidemic reinfection model SIRI, where susceptibles S can become infected I, then recover and remain only partial immune against reinfection R, we present the phase transition lines using the mean field and the pair approximation for the moments. We use a scaling argument that allow us to determine analytically an explicit formula for the phase transition lines in pair approximation.  相似文献   

19.
Mwasa A  Tchuenche JM 《Bio Systems》2011,105(3):190-200
Cholera, an acute gastro-intestinal infection and a waterborne disease continues to emerge in developing countries and remains an important global health challenge. We formulate a mathematical model that captures some essential dynamics of cholera transmission to study the impact of public health educational campaigns, vaccination and treatment as control strategies in curtailing the disease. The education-induced, vaccination-induced and treatment-induced reproductive numbers R(E), R(V), R(T) respectively and the combined reproductive number R(C) are compared with the basic reproduction number R(0) to assess the possible community benefits of these control measures. A Lyapunov functional approach is also used to analyse the stability of the equilibrium points. We perform sensitivity analysis on the key parameters that drive the disease dynamics in order to determine their relative importance to disease transmission and prevalence. Graphical representations are provided to qualitatively support the analytical results.  相似文献   

20.
Mathematical analysis is carried out that completely determines the global dynamics of a mathematical model for the transmission of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). HTLV-I infection of healthy CD4(+) T cells takes place through cell-to-cell contact with infected T cells. The infected T cells can remain latent and harbor virus for several years before virus production occurs. Actively infected T cells can infect other T cells and can convert to ATL cells, whose growth is assumed to follow a classical logistic growth function. Our analysis establishes that the global dynamics of T cells are completely determined by a basic reproduction number R(0). If R(0)< or =1, infected T cells always die out. If R(0)>1, HTLV-I infection becomes chronic, and a unique endemic equilibrium is globally stable in the interior of the feasible region. We also show that the equilibrium level of ATL-cell proliferation is higher when the HTLV-I infection of T cells is chronic than when it is acute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号