首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The majority of collagen mutations causing osteogenesis imperfecta (OI) are glycine substitutions that disrupt formation of the triple helix. A rare type of collagen mutation consists of a duplication or deletion of one or two Gly-X-Y triplets. These mutations shift the register of collagen chains with respect to each other in the helix but do not interrupt the triplet sequence, yet they have severe clinical consequences. We investigated the effect of shifting the register of the collagen helix by a single Gly-X-Y triplet on collagen assembly, stability, and incorporation into fibrils and matrix. These studies utilized a triplet duplication in COL1A1 exon 44 that occurred in the cDNA and gDNA of two siblings with lethal OI. The normal allele encodes three identical Gly-Ala-Hyp triplets at aa 868-876, whereas the mutant allele encodes four. The register shift delays helix formation, causing overmodification. Differential scanning calorimetry yielded a decrease in T(m) of 2 degrees C for helices with one mutant chain and a 6 degrees C decrease in helices with two mutant chains. An in vitro binary co-processing assay of N-proteinase cleavage demonstrated that procollagen with the triplet duplication has slower N-propeptide cleavage than in normal controls or procollagen with proalpha1(I) G832S, G898S, or G997S substitutions, showing that the register shift persists through the entire helix. The register shift disrupts incorporation of mutant collagen into fibrils and matrix. Proband fibrils formed inefficiently in vitro and contained only normal helices and helices with a single mutant chain. Helices with two mutant chains and a significant portion of helices with one mutant chain did not form fibrils. In matrix deposited by proband fibroblasts, mutant chains were abundant in the immaturely cross-linked fraction but constituted a minor fraction of maturely cross-linked chains. The profound effects of shifting the collagen triplet register on chain interactions in the helix and on fibril formation correlate with the severe clinical consequences.  相似文献   

3.
Previous observations with type I collagen from a proband with lethal osteogenesis imperfecta demonstrated that type I collagen containing a substitution of cysteine for glycine alpha 1-748 copolymerized with normal type I collagen (Kadler, K. E., Torre-Blanco, A., Adachi, E., Vogel, B. E., Hojima, Y., and Prockop, D. J. (1991) Biochemistry 30, 5081-5088). Here, three preparations containing normal type I procollagen and type I procollagen with a substitution of cysteine for glycine alpha 1-175, glycine alpha 1-691, or glycine alpha 1-988 were purified from cultured skin fibroblasts from probands with osteogenesis imperfecta. The procollagens were then used as substrates in a system for assaying the self-assembly of type I collagen into fibrils. The cysteine-substituted collagens in all three preparations were incorporated into fibrils. The cysteine alpha 1-175 and cysteine alpha 1-691 collagens were shown to increase the lag time and decrease the propagation rate constant for fibril assembly. All three preparations containing cysteine-substituted collagens formed fibrils with diameters that were two to four times the diameter of fibrils formed under the same conditions by normal type I collagen. Also, the three preparations containing cysteine substituted collagens had higher solubilities than normal type I collagen. The results, therefore, demonstrated that the three cysteine-substituted collagens copolymerized with normal type I collagen. The effects of the mutated collagens on fibril assembly can be understood in terms of a recently proposed model of fibril growth from symmetrical tips by assuming that the mutated monomers partially inhibit tip growth but not lateral growth of the fibrils. Of special interest was the observation that the Cys alpha 1-175 collagen from a proband with a non-lethal variant of osteogenesis imperfecta had quantitatively less effect on several parameters of fibril assembly at 37 degrees C than cysteine-substituted collagens from three probands with lethal variants of the disease.  相似文献   

4.
Type I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al. (1987) J. Biol. Chem. 262, 15696-15701]. The mutated collagens and normal collagens were found to form copolymers under a variety of experimental conditions. With two preparations of the protein that had a high content of alpha 1(I) chains disulfide-linked through the cysteine alpha 1-748, all the large structures formed had a distinctive, highly branched morphology that met one of the formal criteria for a fractal. Preparations with a lower content of disulfide-linked alpha 1(I) chains formed fibrils that were 4 times the diameter of control fibrils. The formation of copolymers was also demonstrated by the observation that the presence of mutated collagens decreased the rate of incorporation of normal collagen into fibrils. In addition, the solution-phase concentration at equilibrium of mixtures of mutated and normal collagens was 5-10-fold greater than that of normal collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have identified a point mutation in one alpha 1(I) collagen allele (COL1A1) of a child with the type IV osteogenesis imperfecta phenotype. When compared to parental and control samples, skin fibroblasts of the proband synthesized two populations of type I collagen molecules. One population was normal; the other was delayed in secretion and electrophoretic migration due to post-translational overmodification. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated a gradient of overmodification beginning near the carboxyl-terminal CB peptides. This predicts that the mutation delaying helix formation is near the carboxyl-terminal end of one of the component chains of type I collagen. The mRNA of the patient was probed with overlapping antisense riboprobes to type I collagen cDNA. Cleavage of a mismatch in RNA/RNA hybrids of RNase A allowed the location of the mutation to a 225-base pair region of alpha 1(I) cDNA. The mismatch was not present in RNA/RNA hybrids from either parent. This region of both alpha 1(I) alleles of the patient was isolated by screening a lambda ZAP cDNA library. Sequence determination of both alleles demonstrated a single nucleotide change, G----A, resulting in the substitution of a serine for a glycine at amino acid residue 832. This point mutation occurs in the coding region for alpha 1(I) CB6 and is concordant with the protein data. The finding of a glycine substitution in an alpha 1(I) chain of a patient with the milder type IV osteogenesis imperfecta phenotype requires modification of current molecular models for types II and IV osteogenesis imperfecta.  相似文献   

6.
Cultured skin fibroblasts from a proband with a lethal form of osteogenesis imperfecta produce two forms of type I collagen chains, with normal and delayed electrophoretic migration; collagen of the proband's mother was normal. Peptide mapping experiments localized the structural defect in the proband to alpha1(I) CB8 peptide in which residues 123 to 402 are spaned. Direct sequencing of amplified cDNA covering this region revealed a G to A single base change in one allele of the alpha1(I) chain, that converted glycine 388 to arginine. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. The novel mutation conforms to the linear gradient of clinical severity for the alpha1(I) chain and results in reduced thermal stability by 3 degrees C and intracellular retention of abnormal molecules.  相似文献   

7.
We studied tissue and cultured skin fibroblasts from a newborn with the lethal perinatal form of osteogenesis imperfecta born to a mother with the Marfan syndrome and her unrelated husband. Dermis from the infant was thinner and fibril diameter smaller than control; dermal fibroblastic cells had dilated endoplasmic reticulum. His fibroblasts in culture synthesized two different species of pro alpha 1(I) chains in about equal quantity. One chain was normal, the other contained cysteine within the triple-helical portion of the COOH-terminal cyanogen bromide peptide alpha 1(I)CB6. Molecules which contained two copies of the mutant chain formed alpha 1(I)-dimers linked through interchain disulfide bonds. Molecules which contained either one or two mutant chains were delayed in secretion and underwent excessive lysyl hydroxylation and hydroxylysyl glycosylation of all chains in the molecule, probably as a result of delayed triple-helix formation. Molecules containing either one or two copies of the mutant chain melted at 38 degrees C instead of 41 degrees C. The most likely explanation for these findings is that a cysteine is substituted for a glycine in the triple-helical domain of the products of one of the alpha 1(I) alleles. Such a substitution would interfere with triple-helix formation and stability and thus explain 1) the decreased melting temperature, 2) the increased post-translational modification, 3) the altered rate of secretion and accumulation of intracellular material, 4) the increased intracellular degradation of newly synthesized collagen, and 5) the decreased collagen production. Since neither parental cell strain produced the same mutant chain, the findings are best explained by a new mutation in one of the alpha 1(I) genes. The role of the uncharacterized "Marfan" gene in modifying the phenotype in this patient is unclear.  相似文献   

8.
A codon frameshift mutation caused by a single base (U) insertion after base pair 4088 of prepro alpha 1(I) mRNA of type I procollagen was identified in a baby with lethal perinatal osteogenesis imperfecta. The mutation was identified in fibroblast RNA by a new method that allows the direct detection of mismatched bases by chemical modification and cleavage in heteroduplexes formed between mRNA and control cDNA probes. The region of mismatches was specifically amplified by the polymerase chain reaction and sequenced. The heterozygous mutation in the amplified cDNA most likely resulted from a T insertion in exon 49 of COL1A1. The frameshift resulted in a truncated pro alpha 1(I) carboxyl-terminal propeptide in which the amino acid sequence was abnormal from Val1146 to the carboxyl terminus. The propeptide lacked Asn1187, which normally carries an N-linked oligosaccharide unit, and was more basic than the normal propeptide. The distribution of cysteines was altered and the mutant propeptide was unable to form normal interchain disulfide bonds. Some of the mutant pro alpha 1(I)' chains were incorporated into type I procollagen molecules but resulted in abnormal helix formation with over-hydroxylation of lysine residues, increased degradation, and poor secretion. Only normal type I collagen was incorporated into the extracellular matrix in vivo resulting in a tissue type I collagen content approximately 20% of that of control (Bateman, J. F., Chan, D., Mascara, T., Rogers, J. G., and Cole, W. G. (1986) Biochem. J. 240, 699-708).  相似文献   

9.
M H Finer  H Boedtker  P Doty 《Gene》1987,56(1):71-78
As a first step in isolating the 5' end of the chicken pro alpha 1(I) collagen gene, we constructed cDNA clones complementary to the 5' end of the pro alpha 1(I) mRNA using synthetic oligodeoxynucleotides complementary to a conserved region within the N-terminal telopeptide as primers. cDNA clones corresponding to the 5'-untranslated region, signal peptide, N-propeptide and telopeptide were identified based on homology with the human pro alpha 1(I) collagen protein sequence, and on hybridization to pro alpha 1(I) mRNA on Northern blots. A comparison of the nucleotide sequence of these clones with the sequence of the 5' end of the pro alpha 2(I) collagen mRNA confirms that there is 84% homology in a 49-bp region surrounding the translation start point, and shows that there is 70% homology in the nucleotide sequences encoding the N-propeptide triple helical region of the two type-I collagen chains.  相似文献   

10.
A proband with lethal osteogenesis imperfecta has been investigated for the causative defect at the levels of collagen protein, mRNA, and DNA. Analysis of type I collagen synthesized by the proband's fibroblasts showed excessive post-translational modification of alpha 1(I) chains along the entire length of the helix. Oververmodification of alpha chains could be prevented by incubation of the cells at 30 rather than 37 degrees C, and the thermal stability of the triple helix, as determined by protease digestion, was normal. RNase A cleavage of RNA:RNA hybrids formed between the proband's mRNA and antisense RNA derived from normal pro-alpha 1(I) chain cDNA clones was used to locate an abnormality to exon 43 of the proband's pro-alpha 1(I) collagen gene (COL1A1). The nucleotide sequence of the corresponding gene region showed, in one allele, the deletion of 9 base pairs, not present in either parent, within a repeating sequence of exon 43. The mutation causes the loss of one of three consecutive Gly-Ala-Pro triplets at positions 868-876, but does not otherwise disrupt the Gly-X-Y sequence. Procollagen processing in fibroblast cultures and susceptibility of the mutant collagen I to cleavage with vertebrate collagenase were normal, indicating that the slippage of collagen chains by one Gly-X-Y triplet does not abolish amino-propeptidase and collagenase cleavage sites. How the mutation produces the lethal osteogenesis imperfecta phenotype is not entirely clear; the data suggest that the interaction of alpha chains immediately prior to helix formation may be affected.  相似文献   

11.
The dermal type I collagen of a patient with Ehlers-Danlos type VIIB (EDS-VIIB) contained normal alpha 2(I) chains and mutant pN-alpha 2(I)' chains in which the amino-terminal propeptide (N-propeptide) remained attached to the alpha 2(I) chain. Similar alpha 2(I) chains were produced by cultured dermal fibroblasts. Amino acid sequencing of tryptic peptides, prepared from the mutant amino-terminal pN-alpha 2(I) CB1' peptide, indicated that five amino acids, including the N-proteinase (the specific proteinase that cleaves the procollagen N-propeptide) cleavage site, had been deleted from the junction of the N-propeptide and the N-telopeptide (the nonhelical domain at the amino-terminus of the alpha chains of fully processed type I polypeptide chains) of the mutant pro-alpha 2(I)' chain. The corresponding 15 nucleotides, which were deleted from approximately half of the alpha 2(I) cDNA polymerase chain reaction products, of the alpha 2(I) cDNA polymerase chain reaction products, were encoded by the +1 to +15 nucleotides of exon 6 of the normal alpha 2(I) gene (COL1A2). These 15 nucleotides were deleted in the splicing of alpha 2(I) pre-mRNA to mRNA as a result of inactivation of the 3' splice site of intron 5 by an AG to AC mutation and the activation of a cryptic AG splice acceptor site corresponding to positions +14 and +15 of exon 6. Loss of the N-proteinase cleavage site explained the persistence of the pN-alpha 2(I)' chains in the dermis and in fibroblast cultures. Collagen production by cultured dermal fibroblasts was doubled, possibly due to reduced feedback inhibition by the N-propeptides. In contrast to previously reported cases of EDS-VIIB, Lys5 of the N-telopeptide was not deleted and appeared to take part in the formation of intramolecular cross-linkages. However, increased collagen solubility and abnormal extraction profiles of the mutant type I collagen molecules indicated that collagen cross-linking was abnormal in the dermis. The proband and her son were heterozygous for the mutation. It is likely that the heterozygous loss of the N-proteinase cleavage site, with persistence of a shortened N-propeptide, was the major factor responsible for the EDS-VIIB phenotype.  相似文献   

12.
The cause of the Ehlers-Danlos syndrome Type VII (EDS VII) is considered to be defective removal of the amino-terminal propeptide (N-propeptide) of Type I procollagen due to deficiency of procollagen N-proteinase, the enzyme responsible for the normal proteolytic excision of this precursor-specific domain. Molecules retaining the N-propeptide (pN-collagen molecules) are thought to cause defective fibrillogenesis and cross-linking which eventuate in dramatic joint laxity and joint dislocations, the clinical hallmark of this variety of EDS. Recent studies demonstrate that some EDS VII patients harbor small deletions of either the pro-alpha 1(I) or pro-alpha 2(I) chain of Type I procollagen. We have found an 18-amino acid deletion (due to exon outsplicing) in a mutant pro-alpha 2(I) chain from such a patient. The deleted peptide is the junctional segment (N-telopeptide) linking the alpha 2(I) N-propeptide and major triple helical domains; loss of this short segment results in union of these latter domains and produces a shortened pN alpha 2(I) chain. Directly extracted tissue collagen and pepsin-digested fibroblast collagen contain this mutant pN alpha 2(I) chain and normal alpha 1(I) chains, but not pN alpha 1(I) chains, indicating that the relatively larger alpha 1(I) N-propeptide is excised from the related alpha 1(I) chains. The fate of this alpha 1(I) N-propeptide was unclear and therefore whether or not the intact N-propeptide was, in fact, retained in native mutant collagen was also unclear. In this paper, we describe morphologic, chemical, and immunochemical studies which indicate that the alpha 1(I) N-propeptide is retained in noncovalent association with the mutant pN alpha 2(I) chain in native mutant collagen molecules both in vivo and in vitro. In both instances, the alpha 1(I) N-propeptides are proteolytically cleaved from the related alpha 1(I) chains. These data suggest that retention of a partially cleaved, but essentially intact N-propeptide in mutant collagen may play a role in the pathogenesis of this disease.  相似文献   

13.
The dermis of a child with Ehlers-Danlos syndrome type IV (EDS-IV) contained about 11% of the normal amount of type III collagen and cultured dermal fibroblasts produced a reduced amount of type III procollagen which was secreted poorly. Type III collagen produced by these cells contained normal and abnormal alpha-chains and cyanogen bromide peptides. The site of the structural defect in the abnormal alpha 1 (III) chains was localized to the region of Met797, which is at the junction of the two carboxyl-terminal CB5 and CB9 cyanogen bromide peptides. Chemical cleavage of heteroduplexes formed between EDS-IV mRNA and a normal cDNA clone covering the CB5 and CB9 region showed that about 100 nucleotides were mismatched. Sequencing of amplified and cloned cDNA spanning the mutant region revealed a 108 nucleotide deletion corresponding to amino acid residues Gly775 to Lys810. The deleted nucleotide sequence corresponded to sequences that, by analogy to the organization of the type I collagen genes, should be precisely encoded by exon 41 of the COL3A1 gene. Sequencing of amplified genomic DNA, prepared using disimilar amounts of primers specific for exons 41 and 42, displayed a base substitution (G-to-A) in the highly conserved GT dinucleotide of the 5' splice site of intron 41. Normal sequences were also obtained from the normal allele. It is likely that the GT-to-AT transition at the splice donor site of intron 41 generated an abnormally spliced mRNA in which sequences of exon 40 and 42 were joined together with maintenance of the reading frame. The corresponding peptide deletion included the cyanogen bromide cleavage site Met797-Pro798 and the mammalian collagenase cleavage site at Gly781-Ile782. These losses account for the resistance of EDS-IV collagen to cyanogen bromide and mammalian collagenase digestion. Cultured fibroblasts produced normal homotrimer, mutant homotrimer, and mixed heterotrimer type III collagen molecules. The mutant homotrimer molecules were the major pepsin-resistant species and about 69% of the alpha 1(III) mRNA was in the mutant form.  相似文献   

14.
15.
We have shown that a child with Ehlers Danlos syndrome (EDS) type VII has a G to A transition at the first nucleotide of intron 6 in one of her COL1A2 alleles. Half of the cDNA clones prepared from the proband's pro alpha 2(I) mRNA lacked exon 6. The type I procollagen secreted by the proband's dermal fibroblasts in culture was purified, and collagen fibrils were generated in vitro by cleavage of the procollagen with the procollagen N- and C-proteinases. Incubation of the procollagen with N-proteinase resulted in a 1:1 mixture of pCcollagen and uncleaved procollagen. Incubation of this mixture with C-proteinase generated collagen and abnormal pNcollagen (pNcollagen-ex6) that readily copolymerized into fibrils. By electron microscopy these fibrils resembled the hieroglyphic fibrils seen in the N-proteinase-deficient skin of dermatosparactic animals and humans and were distinct from the near circular cross-section fibrils seen in the tissues of individuals with EDS type VII. Further incubation of the hieroglyphic fibrils with N-proteinase resulted in partial cleavage of the pNcollagen-ex6 in which the abnormal pN alpha 2(I) chains remained intact. These fibrils were not hieroglyphic but were near circular in cross-section. Fibrils formed from collagen and pNcollagen-ex6 that had been partially cleaved with elevated amounts of N-proteinase prior to fibril formation were also near circular in cross-section. The results are consistent with a model of collagen fibril formation in which the intact N-propeptides are located exclusively at the surface of the hieroglyphic fibrils. Partial cleavage of the pNcollagen-ex6 by N-proteinase allows the N-propeptides to be incorporated within the body of the fibrils. The model provides an explanation for the morphology and molecular composition of collagen fibrils in the tissues of patients with EDS type VII.  相似文献   

16.
Summary Type I collagen chains of a proband from a family with recurrent lethal osteogenesis imperfecta (OI) migrated as a doublet when submitted to gel electrophoresis. Cyanogen bromide (CNBr) peptide mapping demonstrated that the post-translational over-modifications were initiated in 1ICB7. Chemical cleavage of cDNA-RNA heteroduplexes identified a mismatch in the 1I cDNA; this mismatch was subsequently confirmed by sequencing a 249-bp fragment amplified by the polymerase chain reaction. A G to T transition in the second base of the first codon of exon 41 resulted in the substitution of glycine 802 by valine. This mutation impaired collagen secretion by dermal fibroblasts. The over-modified chains were retained intracellularly and melted at a lower temperature than normal chains. Collagen molecules synthesized by parental fibroblasts had a normal electrophoretic mobility, but hybridization of genomic DNA with allele-specific oligonucleotides revealed the presence of the mutant allele in the mother's leukocytes. The mutation was not detected in her fibroblasts consistent with the protein data. These results support the hypothesis that somatic and germ-line mosaicism in the phenotypically normal mother explain the recurrence of OI.  相似文献   

17.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

18.
The functions of aminotelopeptide and N-terminal cross-linking of collagen I were examined. Acetic acid-soluble collagen I (ASC) was purified from neonatal bovine skin and treated with three kinds of proteases. The amino acid sequencing analysis of the N terminus showed that ASC contained a full-length aminotelopeptide. Pepsin and papain cleaved the aminotelopeptide of the alpha1 chain at the same site and the aminotelopeptide of the alpha2 chain at different sites. Proctase-treated ASC lost the whole aminotelopeptide, and the N-terminal sequence began from the tenth residue inside the triple helical region. The rates of fibril formation of pepsin-treated ASC and proctase-treated ASC were the same and were slower than that of ASC. The denaturation temperatures, monitored by CD ellipticity at 221 nm, of ASC, pepsin-treated, or papain-treated collagens were the same at 41.8 degrees C. Proctase-treated ASC showed a lower denaturation temperature of 39.9 degrees C. We also observed the morphology of the collagen fibrils under an electron microscope. The ASC fibrils were straight and thin, whereas the fibrils of pepsin-treated ASC were slightly twisted, and the fibrils from papain- and proctase-treated ASC were highly twisted and thick. When the collagen gel strength was examined by a modified method of viscosity-measurement, ASC was the strongest, followed by pepsin-treated ASC, and papain- and proctase-treated ASCs were the weakest. These results suggest that the aminotelopeptide plays important roles in fibril formation and thermal stability. In addition, the functions of intermolecular cross-linking in aminotelopeptides may contribute to the formation of fibrils in the correct staggered pattern and to strengthening the collagen gel.  相似文献   

19.
Malone JP  Veis A 《Biochemistry》2004,43(49):15358-15366
The amino (N-telo) and carboxyl (C-telo) telopeptides of type I collagen play crucial roles, in vivo and in vitro, in the assembly of collagen fibrils, regulating the axial alignment of the molecules within a fibril, azimuthal orientations of neighboring molecules, and cross-link formation. High-resolution structures of the telopeptides are not available from X-ray diffraction studies, but computational methods permitted prediction of the N-telo structure within a fibril. Here, using a suite of molecular modeling software, the more complex heterotrimeric C-telo of human type I collagen has been built from the correct sequences and energy minimized and the energy minimum confirmed by molecular dynamics. The receptor triple helix was modeled on the basis of the Protein Data Bank coordinates of a collagen-like sequence. Docking of the heterotrimeric C-telopeptide to its receptor showed that hydrophobic interactions involving the short alpha2 C-telopeptide are crucial determinants of its azimuthal orientation within the docked structure. A docked C-telo can interact with only one neighboring helix. The two alpha1(I) C-telo chains in the alpha1(Alpha)-alpha2-alpha1(B) chain stagger do not have identical docked conformations, and one of the alpha1(I) C-telo chains appears to be favored for formation of a cross-link between its K(16C) and a helix K87. Prior studies showed that a docked N-telopeptide can interact with two adjacent collagen monomers, forming a tightly packed region. A recent X-ray analysis showed the N- and C-telo regions pack differently, with the C-telo region being less densely packed than N-telo regions. This difference between N- and C-telopeptide docked structures demonstrates how unique and specific packing can occur in the fibril at each boundary of the type I collagen gap region.  相似文献   

20.
We have studied the folding, processing, and association with two endoplasmic reticulum (ER) resident proteins of the abnormal type I procollagen molecules produced by a strain of fibroblasts harboring a 4.5 kilobase deletion in an allele of COL1A2 (Willing, M. C., Cohn, D.H., Starman, B. Holbrook, K.A., Greenberg, C.R., and Byers, P.H. (1988) J. Biol. Chem. 263, 8398-8404). By sequencing cDNA, we found that the mutant allele encodes pro alpha 2(I) chains that are shortened by 180 amino acids but retain the Gly-X-Y repeat pattern crucial for collagen triple helix formation. The type I procollagen molecules that incorporated the shortened chain were retained intracellularly and were stable. The triple helical domain in these molecules did not attain a normal conformation and remained accessible to posttranslational modifying enzymes amino-terminal to the deletion site for a prolonged period. The abnormal molecules folded into a triple helical conformation more slowly than the normal molecules, and the amino-terminal ends of the pro alpha 1(I) chains failed to become protease-resistant. While the abnormal procollagen molecules were not bound by the ER-resident protein BiP, they stably associated with protein disulfide isomerase, the beta-subunit of prolyl-4-hydroxylase. These results indicate that some mutations in type I collagen genes both transiently delay folding and permanently disrupt the structure of the triple helix and suggest that binding to prolyl-4-hydroxylase helps to retain certain abnormal procollagen molecules within the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号