首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1987,130(2):183-184
cis,cis,trans-[PtIV(NH3)2Cl2(OH)2] reacts reversibly with ascorbic acid to give dehydroascorbic acid and mainly cis-[PtII(NH2Pri)2Cl2]. The parameters for the forward reaction are: kf = 0.584 M s at 37.0 °C, ΔHf = 108.6 −+ 6.4 kJ mol−1 andΔSf = 101 −+ 22 J K−1 mol−1.  相似文献   

2.
This work has been focused on testing the influence of two selected Pt(II) complexes cisplatin, Pt(NH3)2Cl2, and [Pt(dach)Cl2] on the activity of porcine pancreatic phospholipase A2 (PLA2). It has been assumed that this enzyme plays a role in carcinogenesis and that it could be a target in the tumour therapy. The results of this study show that both Pt(II) complexes inhibit the activity of the enzyme, though they bind to it in a different manner. While cisplatin interacts with the enzyme in an acompetitive manner, the stable interaction of [Pt(dach)Cl2] with PLA2 could not be detected under our experimental conditions.  相似文献   

3.
Complexes of the type [Pt(amine)4]I2 were synthesized and characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The compounds were prepared with different primary amines, but not with bulky amines, due to steric hindrance. In 195Pt NMR, the signals were observed between −2715 and −2769 ppm in D2O. The coupling constant 3J(195Pt-1H) for the MeNH2 complex is 42 Hz. In 13C NMR, the average values of the coupling constants 2J(195Pt-13C) and 3J(195Pt-13C) are 18 and 30 Hz, respectively. The crystal structure of [Pt(EtNH2)4]I2 was determined by X-ray diffraction methods. The Pt atom is located on an inversion center. The structure is stabilized by H-bonding between the amines and the iodide ions. The compound with n-BuNH2 was found by crystallographic methods to be [Pt(n-BuNH2)4]2I3(n-BuNHCOO). The crystal contains two independent [Pt(CH3NH2)4]2+ cations, three iodide ions and a carbamate ion formed from the reaction of butylamine with CO2 from the air. When the compound [Pt(CH3NH2)4]I2 was dissolved in acetone, crystals identified as trans-[Pt(CH3NH2)2(H3CNC(CH3)2)2]I2 were isolated and characterized by crystallographic methods. Two trans bonded MeNH2 ligands had reacted with acetone to produce the two N-bonded Schiff base Pt(II) compound.  相似文献   

4.
《Inorganica chimica acta》1988,154(2):177-182
TiCl4 reacts with t-butylamine in benzene to give [Ti(NCMe3)Cl2(NH2CMe3)2]x and t-butylamine hydrochloride. The IR spectrum indicates both c/s and trans metal dichlorides (300; and 308, 208 cm−1). In the 13C NMR spectrum the t-butylimido quaternary carbon resonance occurs at 72.1 ppm. A dimeric structure incorporating symmetric t-butylimido bridges is proposed. TiCl4 in benzene react under reflux with two equivalents of Me3SiNHCMe3 to give [Ti(NCMe3)Cl2(NH2CMe3)]x and with iso-propylamine and ethylamine to give complexes of the form [Ti(NR)Cl2(NH2R)2]x. Broad bands below 800 cm−1 in the IR spectra suggest polymeric MNM bridges. For [Ti(NCHMe2)Cl2(NH2CHMe2)]x the iso-propylimido CH resonance in the 13C NMR spectrum occurs at 67 ppm. [Ti(NCMe3)Cl2(NH2CMe3)2]2 reacts with L=bipy or tmed to give [Ti(NCMe3)Cl2(L)]2, and TiCl4 reacts with two equivalents of Me3SiNHCMe3 in benzene and then tmed to give [Ti(NCMe3)Cl2(tmed)]2. The 13C NMR spectrum shows the t-butylimido quaternary carbon resonance at 73.5 ppm and the tmed resonances are chemically equivalent. A dimeric μ-NCMe3 bridging structure is proposed for the complex.  相似文献   

5.
A Pt(II) complex containing three 1-methylcytosine ligands (C), [Pt(NH3)C3] (CIO4)2· H2], has been prepared starting with cis-Pt(NH3)2Cl2, and its crystal structure has been determined. The title compound represents a model of a hypothetical interaction of cis.Pt(II) with three biomolecules which proceeds via an intermediate monochloro complex, cis-[Pt(NH3)2CCl]Cl, and loss of ammonia from this compound. [Pt(NH3)C3](ClO4)2·H2O crystallizes in space group P21/c (No. 14) with a = 15.296(3), b = 4.666(3), c = 14.025(2) Å, β = 122.61(1)° and has 4 formula units in the unit cell. Data were collected with use of a Syntex P21 diffractometer and MoKα radiation. The crystal structure was determined by standard methods and refined to R1 = 0.043 and R2 = 0.056 based on 2925 independent reflections. The compound contains the three 1-methylcytosine ligands bound through N(3) with the three ligands almost perpendicular to the Pt coordination plane. The two C ligands trans to each other have identical orientations with respect to the platinum square plane whereas the cytosine trans to NH3 has the opposite orientation. Bond lengths and angles are normal.  相似文献   

6.
Tetrachloroauric acid HAuCl4 reacts with the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium nitrate [NH2(CH2)2ImMe]NO3, (2b) or its dicationic ammonium salt [NH3(CH2)2ImMe][NO3]2, (3) in methanolic solutions to give the novel gold(III)-aminoethyl imidazolium aurate salt [Cl3AuNH2(CH2)2ImMe][AuCl4] (4). The reaction of 4 with [nBu4]Cl gives [NH2(CH2)2ImMe][AuCl4] (2c) whereas with acetone the dicationic, iminium-functionalized, imidazolium aurate salt [Me2C=N(H)(CH2)2ImMe][AuCl4]2 (5) has been isolated. The structures in the solid state of 2c, 3, 4, and 5 have been determined by X-ray diffraction. The electrochemical behaviour of 4 has been examined by Cyclic voltammetry in acetonitrile and compared with 2c and KAuCl4.  相似文献   

7.
Complexes [Au(2Ac4oT)Cl][AuCl2] (1), [Au(Hpy2Ac4mT)Cl2]Cl·H2O (2), [Au(Hpy2Ac4pT)Cl2]Cl (3), [Pt(H2Ac4oT)Cl]Cl (4), [Pt(2Ac4mT)Cl]·H2O (5), [Pt(2Ac4pT)Cl] (6) and [Pt(L)Cl2OH], L = 2Ac4mT (7), 2Ac4oT (8), 2Ac4pT (9) were prepared with N(4)-ortho- (H2Ac4oT), N(4)-meta- (H2Ac4mT) and N(4)-para- (H2Ac4pT) tolyl-2-acetylpyridine thiosemicarbazone. The cytotoxic activities of all compounds were assayed against U-87 and T-98 human malignant glioma cell lines. Upon coordination cytotoxicity improved in 2, 5 and 8. In general, the gold(III) complexes were more cytotoxic than those with platinum(II,IV). Several of these compounds proved to be more active than cisplatin and auranofin used as controls. The gold(III) complexes probably act by inhibiting the activity of thioredoxin reductase enzyme whereas the mode of action of the platinum(II,IV) complexes involves binding to DNA. Cells treated with the studied compounds presented morphological changes such as cell shrinkage and blebs formation, which indicate cell death by apoptosis induction.  相似文献   

8.
Six new dinuclear complexes, derived from cis-[Co(H2O)2(NH3)4]3+, cis-[Co(H2O)2(en)2]3+ and [M(CN)42? (M = Ni, Pd, Pt) were prepared and characterized by means of chemical analysis, electronic and IR measurements. The influence of the pH on the rate of the reaction was studied for the two derivatives of [Pd(CN)4]2?, showing that the best conditions to obtain the dinuclear compounds are at pH near 6, where the predominant species are cis-[Co(OH)(H2O)(amine)2]2+. The [Pt(CN)4]2? derivatives show PtPt interactions both in the solid state and in solution.  相似文献   

9.
The niobium complex [NbCpClCl4] (CpClη5-C5H4(SiCl2Me)) (1) with a functionalized (dichloromethylsilyl)cyclopentadienyl ligand was isolated by the reaction of [NbCl5] with C5H4(SiCl2Me)(SiMe3). Complex 1 was a precursor for the imido silylamido derivative [NbCpNCl2(NtBu)] (CpNη5-C5H4[SiClMe(NHtBu)]) (2) after addition of LiNHtBu, which subsequently gave the dichlorosilyl compound [NbCpClCl2(NtBu)] (3) when reacted with SiCl3Me. Addition of LiNHtBu to complex 2 gave the niobium amido complex [NbCpNCl(NHtBu)(NtBu)] (4), which slowly evolved with exchange of the niobium-amido and the silicon-chloro groups to give the dichloroniobium complex [NbCpNNCl2(NtBu)] (CpNNη5-C5H4[SiMe(NHtBu)2]) (5). Reaction of 2 with excess LiNHtBu gave the silyl-η-amido constrained geometry complexes [Nb{η5-C5H4[SiMe(NHtBu)(-η-NtBu)]}(NHtBu)(NtBu)] (6) and [Nb{η5-C5H4[SiClMe(-η-NtBu)]}(NHtBu)(NtBu)] (7), whereas addition of one equimolecular amount of LiNHtBu to 5 in C6D6 afforded complex [NbCpNNCl(NHtBu)(NtBu)] (8). All of the new complexes were characterized by 1H, 13C and 29Si NMR spectroscopy.  相似文献   

10.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

11.
The “amidate-hanging” Pt mononuclear complexes, which can easily bind a second metal ion with the non-coordinated oxygen atoms in the amidate moieties, have been synthesized and characterized by 1H NMR, MS, IR spectroscopy, and single crystal X-ray analysis. Five new complexes with various amidate ligands and co-ligands, cis-[Pt(PVM)2(en)] · 4H2O (1, PVM = pivaloamidate, en = ethylenediamine), cis-[Pt(PVM)2(NH2CH3)2] · H2O (2), cis-[Pt(PVM)2(NH2tBu)2] (3), cis-[Pt(TCM)2(NH3)2] (4, TCM = trichloroacetamidate), and cis-[Pt(BZM)2(NH3)2] (5, BZM = benzamidate), were successfully synthesized by direct base hydrolysis of the corresponding Pt nitrile complexes, cis-[Pt(NCR)2(Am)2]2+ (P1, P2, P3, and P5) (NCR = nitrile, Am = amine). These nitrile complexes were obtained by introducing nitriles into the Pt aqua complexes, cis-[Pt(OH2)2(Am)2](ClO4)2, whereas introduction of trichloronitrile into [Pt(OH2)2(NH3)2](ClO4)2 induced more facilitated water nucleophilic attack to afford [Pt(TCM)(NH(COH)CCl3)(NH3)2](ClO4) (P4). The base treatments of the precursor complexes (P1-5) lead to produce “amidate-hanging” Pt mononuclear complexes (1-5) without geometry isomerization. The 195Pt chemical shifts for 1-5 exhibit subtle differences of the Pt electron densities among them.  相似文献   

12.
Recent developments in the field of platinum anticancer drugs have revealed that compounds containing derivates of pyridine may exhibit highly cytotoxic activity against a variety of tumor cells, with AMD473 (cis-PtCl2(NH3)(2-methylpyridine)) as one of the most relevant examples. Following these advances, this paper describes the synthesis, characterization and X-ray structure of the square-planar compound cis-[Pt(3-Acpy)2Cl2] (1, Acpy stands for acetylpyridine), where the coordination of 3-acetylpyridine takes places through the pyridine nitrogen of the ligand. The structural arrangement of this compound is highly peculiar and it is the first example with two of these 3-acetylpyridine molecules in a cis disposition. In addition, the anticancer and antibacterial activities of this compound together with studies of DNA binding are also described in detail, with selective activity of compound 1 against A2780R cells. cis-[Pt(3-Acpy)2Cl2] apparently coordinates to the DNA double helix upon exchange of at least one of the Cl ions with the media and shows very interesting bacteriolytic and bacteriostatic activity against Escherichia coli and Streptomyces, respectively.  相似文献   

13.
New tetrazolate complexes trans-[PtCl2(RCN4)2]2−, trans-[PtCl4(RCN4)2]2− with Ph3PCH2Ph+ and (CH3)2NH2+ counterions have been obtained by azidation of nitriles coordinated to Pt(II) and Pt(IV) {trans-[PtCl2(RCN)2] and trans-[PtCl4(RCN)2] (R = Et, Ph)} and characterized. The composition and the molecular structure of the complexes obtained were established by the СHN elemental analyses, 1Н and 13С NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray diffraction. The coordination of nitriles to Pt(II) and Pt(IV) is shown significantly activate the azidation: the reaction proceeds with a higher rate and at relatively low temperature compared with the classical 1,3-dipolar addition of azides to nitriles.  相似文献   

14.
《Inorganica chimica acta》1986,115(2):187-192
195-Platinum NMR spectra are reported for a series of complexes of bidentate ligands [Pt(LL)X4] (X=Cl, Br; LL=diphosphine, diarsine, dithioether, diselenoether), [Pt(Me2PCH2CH2PMe2)2X2]X2, [Pt(o-C6H4(AsMe2)2)2X2]X2, and for the Pt(II) analogues. The trends in chemical shifts δ(Pt) and 1J(PtP), 1J(PtSe) coupling constants are discussed, and used to establish the nature of the solution species obtained by oxidation of Pt(II) complexes of some multidentate phosphorus and arsenic ligands. The [Pt(LL)I4] materials are shown to exist as [PtII(LL)I2] in dimethylsulphoxide solution, but [Pt(o-C6H4(AsMe2)2)2I2]2+ is a genuine Pt(IV) iodo-complex.  相似文献   

15.
A hexarhenium cyanohydroxo anionic cluster complex [Re6Se8(CN)4(OH)2]4− was synthesized for the first time starting from [Re6Se8(OH)6]4−, which was crystallized as a salt of the composition Cs2.75K1.25[Re6Se8(CN)4(OH)2]·H2O (1). The reaction of the complex with Cu2+ in an aqueous ammonia or methylamine solutions afforded [Cu(NH3)5]2[Re6Se8(CN)4(OH)2]·8H2O (2) or [{Cu(CH3NH2)4}2Re6Se8(CN)4(OH)2] (3), respectively. All of these three compounds were characterized by a single-crystal X-ray diffraction method. Compound 1 is crystallized in the tetragonal space group I4/m with eight formula units per cell (a = b = 17.4823(14) Å, c = 19.430(2) Å, V = 5938.3(10) Å3); compound 2 is crystallized in the monoclinic space group P21/n with two formula units per cell (a = 12.1845(13) Å, b = 8.6554(9) Å, c = 19.2568(19) Å, β = 91.081(2)°, V = 2030.5(4) Å3); compound 3 is crystallized in the orthorhombic space group Cmcm with four formula units per cell (a = 19.816(4) Å, b = 14.611(3) Å, c = 13.751(3) Å, V = 3981.2(13) Å3). The luminescence properties of 1 were studied in both aqueous solution and solid state. In addition, the electronic structure of [Re6Se8(CN)4(OH)2]4− was elucidated by DFT calculations.  相似文献   

16.
Reaction between a mixture of cis-trans-[PtCl2(SMe2)2] and 1 equiv. AsPh3 in chloroform gives cis-[PtCl2(SMe2)(AsPh3)] crystallizing in P21/n with a=10.397(2), b=14.876(3), c=13.956(3) Å, β=90.86(3)° and Z=4. Selected geometrical parameters are PtAs 2.3531(10), PtS 2.262(2), PtCl (trans to S) 2.301(2), PtCl (trans to As) 2.328(2) Å and SPtAs 88.85(6), SPtCl(2) 90.77(8), AsPtCl(1) 91.07(6) and ClPtCl 89.42(7)°. cis-[PtCl2(AsPh3)2]·CHCl3 crystallizes in P21/c with a=20.557(4), b=9.5951(19), c=20.147(4) Å, β=96.77(3)° and Z=4. Selected geometrical parameters are PtAs(1) 2.3599(9), PtAs(2) 2.3770(9), PtCl(1) (trans to As(1)) 2.3515(18), PtCl(2) (trans to As(2)) 2.3251(18) Å and AsPtAs 97.87(3), As(1)PtCl(2) 88.67(5), As(2)PtCl(1) 84.30(5) and ClPtCl 89.32(7)°. By comparison with related structures from the literature the following trans influence series was established PMe2Ph>PPh3>AsPh3≈SbPh3>Me2SO≈SMe2≈SPh2>NH3≈olefin>Cl>MeCN.  相似文献   

17.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

18.
Interaction between the sodium salt of a DNA extracted from salmon sperm (41% GC) with [Pt(NH3)4]Cl2, [Pt(NH2? (CH2)2? NH? (CH2)2? NH2Cl]Cl, cis-Pt(NH2? (CH2)2? NH2)Cl2, cis-Pt(NH3)2Cl2, trans-Pt(NH3)2Cl2, K[Pt(C2H4)Cl3], and K2[PtCl4) indicates at least three types of complexation. A correlation is found between the change of pH and the number of platinum atoms fixed per (AT + GC) unit. The first binding site is located on the G-C pairs (guanine–cytosine), most likely the N-7(G) site, as it was shown in a previous study of the guanosine-platinum salts. The fixation of the second platinum atom by the pair (AT + GC) takes place with liberation of protons. In the case of the complexes cis-Pt(NH2? (CH2)2? NH2)Cl2, cis-Pt(NH3)2Cl2, and trans-Pt(NH3)2Cl2 the second interaction seems to involve simultaneously the N-7(A) and the N-1(G) and N-3(C) sites. This latter intercrosslink between guanine and cytosine obviously liberates protons and the decrease of pH is related in this case to the trans effect of the platinum compounds. The first two platinum atoms in the reaction of K2PtCl4] or the Zeise salt, K[Pt(C2H4)Cl3] with DNA are fixed on the G-C pairs. A maximum of six platinum atoms per (AT + GC) unit were fixed in this case. Preliminary experiments with a DNA extracted from bacteria Micrococcus lysodeikticus (72% GC) give similar results.  相似文献   

19.
The synthesis and characterisation of eight new octahedral PtIV complexes of the type trans,trans,trans-[Pt(N3)2(OH)2(NH3)(Am)] where Am = methylamine (2), ethylamine (4), thiazole (6), 2-picoline (8), 3-picoline (10), 4-picoline (12), cyclohexylamine (14), and quinoline (16) are reported, including the X-ray crystal structures of complexes 2, 8, and 14 as well as that of two of the precursor PtII complexes (trans-[Pt(N3)2(NH3)(methylamine)] (1) and trans-[Pt(N3)2(NH3)(cyclohexylamine)] (13)). Irradiation with UVA light rapidly induces loss in intensity of the azide-to-PtIV charge-transfer bands and gives rise to photoreduction of platinum. These complexes have potential for use as photoactivated anticancer agents.  相似文献   

20.
In this study, two Pt(II) and three Pt(IV) complexes with the structures of [PtL2Cl2] (1), [PtL2I2] (2), [PtL2Cl2(OH)2] (3), [PtL2Cl2(OCOCH3)2] (4), and [PtL2Cl4] (5) (L = benzimidazole as carrier ligand) were synthesized and evaluated for their in vitro antiproliferative activities against the human MCF-7, HeLa, and HEp-2 cancer cell lines. The influence of compounds 1–5 on the tertiary structure of DNA was determined by their ability to modify the electrophoretic mobility of the form I and II bands of pBR322 plasmid DNA. The inhibition of BamH1 restriction enzyme activity of compounds 1–5 was also determined. In general, it was found that compounds 1–5 were less active than cisplatin and carboplatin against MCF-7 and HeLa cell lines (except for 1, which was found to be more active than carboplatin against the MCF-7 cell line). Compounds 1 and 3 were found to be significantly more active than cisplatin and carboplatin against the HEp-2 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号