首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
大兴安岭2001-2010年森林火灾碳排放的计量估算   总被引:3,自引:0,他引:3  
胡海清  魏书精  孙龙 《生态学报》2012,32(17):5373-5386
林火是森林生态系统重要的干扰因子,是导致植被和土壤碳储量减少的重要路径之一。森林火灾总碳和含碳气体的排放对气候变化具有重要影响,科学有效地对其进行计量,对了解全球的碳平衡和碳循环,以及森林火灾对大气碳平衡的影响机理均有重要意义。大兴安岭是我国唯一的寒温带针叶林区,又是森林火灾的多发区,科学计量该区森林火灾的碳排放量,对了解区域碳平衡具有重要意义。根据大兴安岭2001—2010年森林火灾统计资料和森林资源清查中各林型可燃物载量数据,通过野外调查和采样,并结合野外火烧迹地调查与室内控制环境实验相结合的方法确定各种计量参数,从林分水平上计量大兴安岭2001—2010年间森林火灾所排放的总碳和含碳气体排放量。结果表明:大兴安岭在10a间森林火灾所排放的总碳量为5.36×106t;含碳气体排放量CO2、CO、CH4和NMHC分别为1.73×107t、1.10×106t、7.10×104t和3.50×104t。通过分析可知3种兴安落叶松林型(杜鹃-落叶松林、杜香-落叶松林和草类-落叶松林)对该区的碳排放具有重要贡献,占总碳排放量的83.08%,占含碳气体排放量CO2、CO、CH4和NMHC分别为83.36%、82.25%、57.96%、81.00%。同时研究表明,该区年均的碳排放对区域碳平衡产生重要影响。  相似文献   

2.
森林火灾碳排放计量模型研究进展   总被引:7,自引:0,他引:7  
森林火灾是森林生态系统重要的干扰因子,是导致植被和土壤碳储量减少的重要途径之一.森林火灾含碳气体排放对大气碳平衡及全球气候变化具有重要影响,科学有效地对其进行计量,对了解森林火灾在全球碳循环和碳平衡中的地位具有重要意义.本文从3个方面阐述森林火灾碳排放计量模型的研究进展: 森林火灾直接排放总碳和含碳气体计量方法;森林火灾碳排放计量模型的影响因子及计量参数;森林火灾碳排放计量中不确定性原因剖析.最后提出了提高碳排放计量定量化的3种路径选择: 利用高分辨率遥感数据、改进算法、提高森林火灾面积的估测精度、结合有效可燃物计量模型,提高估测可燃物载量的准确率;使用高分辨率遥感影像,并结合室内控制实验、野外试验与火烧迹地调查确定燃烧效率;通过大量室内燃烧实验和野外空中采样来确定排放因子和排放比.  相似文献   

3.
根据1953-2011年小兴安岭森林调查数据和森林火灾统计资料,结合野外火烧迹地调查与室内控制试验数据,估算了小兴安岭1953-2011年森林火灾的碳排放量和含碳气体排放量.结果表明: 1953-2011年小兴安岭森林火灾的总碳排放量为1.12×107 t,年均排放量为1.90×105 t,约占全国年均森林火灾碳排放量的1.7%;其中,含碳气体CO2、CO、CH4和非甲烷烃(NMHC)的排放量分别为3.39×107、1.94×105、1.09×105和7.46×104 t,相应年均排放量5.74×105、3.29×104、1.85×103、1.27×103 t分别占全国年均森林火灾含碳气体排放量的1.4%、1.2%、1.7%和1.1%.不同林型的燃烧效率和单位过火面积的碳排放量均为针叶林>阔叶林>针阔混交林.最后提出了合理的林火管理措施.  相似文献   

4.
1965–2010年大兴安岭森林火灾碳排放的估算研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 火干扰是森林生态系统的重要干扰因子, 是导致植被和土壤碳储量发生变化的重要原因。火干扰所排放的含碳气体对气候变化具有重要的影响。科学有效地对森林火灾所排放的碳进行计量, 对了解区域和全球的碳平衡及碳循环具有重要的意义。根据大兴安岭森林资源调查数据和1965–2010年森林火灾统计资料, 利用地理信息系统GIS (geographic information system)技术, 通过野外火烧迹地调查与室内控制环境实验相结合的方法确定各种计量参数, 从林分水平上, 采用排放因子法, 估算了大兴安岭1965–2010年46年间森林火灾所排放的碳和含碳气体量。结果表明: 大兴安岭46年间森林火灾排放的碳为2.93 × 107 t, 年平均排放量为6.38 × 105 t, 约占全国年均森林火灾碳排放量的5.64%; 含碳气体CO2、CO、CH4和非甲烷烃(NMHC)的排放量分别为1.02 × 108、9.41 × 106、5.41 × 105和2.11 × 105 t, 含碳气体CO2、CO、CH4和NMHC的年均排放量分别为2.22 × 106、2.05 × 105、1.18 × 104和4.59 × 103 t, 分别占全国年均森林火灾各含碳气体排放量的5.46%、7.56%、10.54%和4.06%; 针阔混交林燃烧效率较低, 虽然火烧面积占总过火面积的21.23%, 但排放的碳只占总排放量的7.81%, 为此提出了相应的林火管理策略。  相似文献   

5.
应用排放因子法估算了1980—2005年间大兴安岭林区森林火灾中5种主要乔木树种含碳气体总的释放量.结果表明:不同乔木树种燃烧释放含碳气体的排放因子不同,其中樟子松的CO2平均排放因子最大, 山杨的CO2平均排放因子最小;落叶松和山杨的CO和CxHy平均排放因子最大,山杨和落叶松的CO和CxHy平均排放因子最小.结合5种主要乔木树种各器官的含碳率和总生物量,得出25年间5种乔木共释放CO2 16.58 Tg、CO 1.61 Tg、CxHy 0.54 Tg. 其中落叶松的CO2、CO和CxHy释放量分别为5.00、0.63和0.05 Tg; 樟子松为0.225、0.023和0.003 Tg; 白桦为11.22、0.83和0.41 Tg;山杨为0.022、0.004和0.00034 Tg;蒙古栎为3.12、0.13和0.062 Tg.  相似文献   

6.
浙江省1991~2006年森林火灾释放黑碳量的估算   总被引:3,自引:0,他引:3  
黑碳气溶胶不仅造成环境污染危害人的健康,同时通过吸收太阳和大气辐射产生的辐射强迫对全球和区域产生影响,成为影响全球变暖的仅次于CO2的重要成分.在全球变暖及大气中CO2浓度不断升高的趋势下,各国开始采用造林再造林来减缓全球变暖的趋势,随着森林面积和林内生物量的不断增加,以及森林火灾的频发,林火带来的黑碳排放量也不容忽视.然而在世界上大部分地区,这方面的工作却很少被人所关注.根据1991~2006年浙江省森林火灾统计资料和浙江省各种森林类型地上生物量的数据,计算出了浙江省每年的森林火灾导致的生物量损失量.同时采取释放因子法,对1991~2006浙江省每年森林火灾释放的黑碳量进行了估算.其中1995年和2000年森林火灾释放的黑碳总量分别是38.4、97.2 t,占整个浙江省黑碳释放总量中的比重分别是0.12%、0.17%,对于区域大气质量有一定的影响.  相似文献   

7.
新疆玛纳斯河流域绿洲生态安全评价   总被引:10,自引:0,他引:10  
利用层次分析法和模糊综合评判法建立了生态安全评价指标体系,从水资源、环境和社会经济3个方面选取了18个评价指标对2006年新疆玛纳斯河流域绿洲生态安全进行了综合评价.结果表明:2006年,研究区生态状况处于基本安全水平,其隶属度值为0.3347,综合评分值为0.551;水资源安全指数和社会经济指数分别处于比较安全和非常安全水平,而环境安全指数则处于不安全水平状态.水资源是绿洲实现可持续发展的保障,社会经济指数和环境安全指数展示了绿洲的发展水平和环境状况,三因素极大程度上决定了绿洲的生态安全水平.  相似文献   

8.
伴随着我国经济的发展和对环境保护意识的加深,林业的重要性越来越被提到日程上来,因此有效的保护森林资源就成为工作的重点。本文就如何采取有效措施,对森林火灾的综合防控能力进行提升进行一下探讨。  相似文献   

9.
澳大利亚森林火灾的管理与火生态的研究   总被引:9,自引:1,他引:9  
澳大利亚是火灾频发的地区.每年因森林火灾的危害都要造成相当的社会、经济损失及生态环境的破坏,故火生态的研究及火的管理在澳大利亚的生态学研究中一直占有重要地位.本文主要讨论了澳洲森林大火起燃的物理过程和机制、可燃物的特征、林火的特点、习性及对生态环境的影响和如何控制和减少火灾的危害性,达到对火进行利用、控制和管理的目的.  相似文献   

10.
1950—2008年江西省森林火灾的碳损失估算   总被引:1,自引:0,他引:1  
1950—2008年间江西省年均发生森林火灾762次、年均过火面积1.578×104hm2.本文利用江西省森林火灾统计数据,结合气象、森林分布和历次森林清查数据,分析了该省林火的特征,估算历年的林火碳释放量和碳转移量.结果表明:1950—2008年江西省森林火灾导致的森林生物量总损失约61.155 Tg,活生物量碳库损失约30.993 Tg C,占全省植被碳库的15.92%.20世纪70年代以前林火生物量碳损失率约占1950—2008年生物量总碳损失的74.3%;90年代以后,年均林火生物量碳损失小于0.097 Tg C.森林火灾释放的CO2、CH4和CO气体分别为5.408 Tg、0.047 Tg和0.486 Tg,有22.436 Tg C活生物量碳进入土壤碳库.2008年初雨雪冰冻灾害引发的高频率次生林火灾害导致森林活生物量碳损失(0.463 Tg C)是前5年平均值(0.181 Tg C)的2.56倍.  相似文献   

11.
吉林省主要林型森林火灾的碳量释放   总被引:1,自引:0,他引:1  
单延龙  王淑群  曾超  翟成刚  张姣 《生态学报》2010,30(9):2254-2260
火是森林生态系统主要的干扰因子,森林火灾的频繁发生不仅使森林生态系统遭到破坏,同时也造成了含碳温室气体的大量释放。国际上对森林火灾释放温室气体的研究越来越多,中国学者也对我国森林火灾释放的温室气体进行了研究。当前,对森林火灾释放碳量的估算主要应用平均生物量数据,而不是应用每次森林火灾实际燃烧的生物量,另外对林型森林火灾碳释放的差异研究不够深入。根据每次森林火灾实际燃烧的生物量来研究吉林省主要林型森林火灾碳释放。根据吉林省1969—2004年的森林火灾统计数据,计算出了吉林省主要林型森林火灾释放碳量。其中,白桦林、阔叶混交林、针阔混交林、落叶松林、柞树林、杨树林和红松林森林火灾直接释放的碳量占1969—2004年吉林省森林火灾碳释放总量的99.7%。白桦林、阔叶混交林、针阔混交林、落叶松林、柞树林、杨树林和红松林森林火灾年均释放的碳量分别为6593.75-8791.66、5650.28-7533.71、3906.57-5208.76、2110.75-2814.33、1613.71-2151.61、295.49-393.98、234.37-312.50 t。用排放比法得出了吉林省主要林型森林火灾释放的CO2、CO、CH4量。白桦林、阔叶混交林、针阔混交林、落叶松林、柞树林、杨树林和红松林森林火灾年均释放的CO2量分别为21759.36-29012.48、18645.93-24861.24、12891.69-17188.92、6965.46-9287.29、5325.25-7100.33、975.11-1300.14、773.43-1031.24 t,年均释放的CO量分别为1583.09-2110.78、1356.57-1808.76、937.93-1250.57、506.77-675.69、387.43-516.58、70.94-94.59、56.27-75.03 t,年均释放的CH4量分别为534.71-712.94、458.20-610.93、316.80-422.39、171.17-228.22、130.86-174.48、23.96-31.95、19.01-25.34 t。通过时间系列分析,白桦林自1980年以后、针阔混交林自1984年以后和红松林自1983年以后已经不是主要森林火灾碳释放林型。目前主要森林火灾碳释放林型为阔叶混交林、落叶松林、柞树林和杨树林,特别是柞树林,年均碳释放为237.12-316.16 t。  相似文献   

12.
刘慧雅  王铮  马晓哲 《生态学报》2011,31(15):4405-4414
以云南省为例,用马尔科夫链计算能源结构,在经济增长模型基础上基于动态最优化理论估计能源消费碳排放,并基于CO2FIX模型计算云南省森林碳汇,预测在能源消费碳排放和森林碳汇共同作用下的从2008到2050年碳净排放量。研究发现云南省能源消费碳排放量和碳净排放量曲线都呈"倒U"型,在2035年达到高峰,高峰值分别为和129.71 MtC和118.89 MtC;在森林碳汇中,原有森林的碳汇作用在现在和未来一段时间内处于主导地位,但新造林有着巨大的碳汇潜力,所以在保护原有森林的同时要植树造林,从生态学角度抵消碳排放;森林碳汇只能减少小部分碳排放,更主要的是改善云南省的能源结构,加快技术进步速度,开发水电等新能源,从根本上减少温室气体的排放。  相似文献   

13.
黄麟  邵全琴  刘纪远 《生态学杂志》2010,21(9):2241-2248
1950—2008年间江西省年均发生森林火灾762次、年均过火面积1.578×10.4 hm2.本文利用江西省森林火灾统计数据,结合气象、森林分布和历次森林清查数据,分析了该省林火的特征,估算历年的林火碳释放量和碳转移量.结果表明: 1950—2008年江西省森林火灾导致的森林生物量总损失约61.155 Tg,活生物量碳库损失约30.993 Tg C,占全省植被碳库的15.92%.20世纪70年代以前林火生物量碳损失率约占1950—2008年生物量总碳损失的74.3%;90年代以后,年均林火生物量碳损失小于0.097 Tg C.森林火灾释放的CO2、CH4和CO气体分别为5.408 Tg、0.047 Tg和0.486 Tg,有22.436 Tg C活生物量碳进入土壤碳库.2008年初雨雪冰冻灾害引发的高频率次生林火灾害导致森林活生物量碳损失(0.463 Tg C)是前5年平均值(0.181 Tg C)的2.56倍.  相似文献   

14.
Forest fires are a significant and natural element of the circumboreal forest. Fire activity is strongly linked to weather, and increased fire activity due to climate change is anticipated or arguably has already occurred. Recent studies suggest a doubling of area burned along with a 50% increase in fire occurrence in parts of the circumboreal by the end of this century. Fire management agencies' ability to cope with these increases in fire activity is limited, as these organizations operate with a narrow margin between success and failure; a disproportionate number of fires may escape initial attack under a warmer climate, resulting in an increase in area burned that will be much greater than the corresponding increase in fire weather severity. There may be only a decade or two before increased fire activity means fire management agencies cannot maintain their current levels of effectiveness.  相似文献   

15.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号