首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reasonable mechanical microenvironment similar to the bone microenvironment in vivo is critical to the formation of engineering bone tissues. As fluid shear stress (FSS) produced by perfusion culture system can lead to the osteogenic differentiation of human mesenchymal stem cells (hMSCs), it is widely used in studies of bone tissue engineering. However, effects of FSS on the differentiation of hMSCs largely depend on the FSS application manner. It is interesting how different FSS application manners influence the differentiation of hMSCs. In this study, we examined the effects of intermittent FSS and continuous FSS on the osteogenic differentiation of hMSCs. The phosphorylation level of ERK1/2 and FAK is measured to investigate the effects of different FSS application manners on the activation of signaling molecules. The results showed that intermittent FSS could promote the osteogenic differentiation of hMSCs. The expression level of osteogenic genes and the alkaline phosphatase (ALP) activity in cells under intermittent FSS application were significantly higher than those in cells under continuous FSS application. Moreover, intermittent FSS up-regulated the activity of ERK1/2 and FAK. Our study demonstrated that intermittent FSS is more effective to induce the osteogenic differentiation of hMSCs than continuous FSS.  相似文献   

2.
Zheng Q  Huang G  Yang J  Xu Y  Guo C  Xi Y  Pan Z  Wang J 《Biological chemistry》2007,388(7):755-763
Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.  相似文献   

3.
Human bone marrow-derived mesenchymal stromal cells (hMSCs) have the capacity to differentiate into several cell types including osteoblasts and are therefore an important cell source for bone tissue regeneration. A crucial issue is to identify mechanisms that trigger hMSC osteoblast differentiation to promote osteogenic potential. Casitas B lineage lymphoma (Cbl) is an E3 ubiquitin ligase that ubiquitinates and targets several molecules for degradation. We hypothesized that attenuation of Cbl-mediated degradation of receptor tyrosine kinases (RTKs) may promote osteogenic differentiation in hMSCs. We show here that specific inhibition of Cbl interaction with RTKs using a Cbl mutant (G306E) promotes expression of osteoblast markers (Runx2, alkaline phosphatase, type 1 collagen, osteocalcin) and increases osteogenic differentiation in clonal bone marrow-derived hMSCs and primary hMSCs. Analysis of molecular mechanisms revealed that the Cbl mutant increased PDGF receptor α and FGF receptor 2 but not EGF receptor expression in hMSCs, resulting in increased ERK1/2 and PI3K signaling. Pharmacological inhibition of FGFR or PDGFR abrogated in vitro osteogenesis induced by the Cbl mutant. The data reveal that specific inhibition of Cbl interaction with RTKs promotes the osteogenic differentiation program in hMSCs in part by decreased Cbl-mediated PDGFRα and FGFR2 ubiquitination, providing a novel mechanistic approach targeting Cbl to promote the osteogenic capacity of hMSCs.  相似文献   

4.
Salvianolic acid B, a major bioactive component of Chinese medicine herb, Salvia miltiorrhiza, is widely used for treatment of cardiovascular diseases. Our recent studies have shown that Salvianolic acid B can prevent development of osteoporosis. However, the underlying mechanisms are still not clarified clearly. In the present study, we aim to investigate the effects of Salvianolic acid B on viability and osteogenic differentiation of human mesenchymal stem cells (hMSCs). The results showed Salvianolic acid B (Sal B) had no obvious toxic effects on hMSCs, whereas Sal B supplementation (5 μM) increased the alkaline phosphatase activity, osteopontin, Runx2 and osterix expression in hMSCs. Under osteogenic induction condition, Sal B (5 μM) significantly promoted mineralization; and when the extracellular-signal-regulated kinases signaling (ERK) pathway was blocked, the anabolic effects of Sal B were diminished, indicating that Sal B promoted osteogenesis of hMSCs through activating ERK signaling pathway. The current study confirms that Sal B promotes osteogenesis of hMSCs with no cytotoxicity, and it may be used as a potential therapeutic agent for the management of osteoporosis.  相似文献   

5.
6.
Liao XB  Zhou XM  Li JM  Yang JF  Tan ZP  Hu ZW  Liu W  Lu Y  Yuan LQ 《Amino acids》2008,34(4):525-530
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free β-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the β-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor α1 (Cbfα1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfα1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.  相似文献   

7.
Forkhead box O1 (FOXO1) is a key regulator of osteogenesis. The aim of this study was to identify the mechanisms of microRNAs (miRNAs) targeting FOXO1 in osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). Three miRNA target prediction programs were used to search for potential miRNAs that target FOXO1. Quantitative real-time polymerase chain reaction was conducted to detect the expression of miR-1271-5p and FOXO1 during osteogenic differentiation. Target gene prediction and screening, luciferase reporter assay was used to verify the downstream target gene of miR-1271-5p. The expression levels of FOXO1 and Runx2 were detected by RT-qPCR and Western blot analysis. Alkaline phosphatase (ALP) activity and matrix mineralization were detected by biochemical methods. The expression levels of Runx2, ALP, and osteocalcin were detected by RT-qPCR. Our results showed that miR-1271-5p was downregulated during osteogenic induction. And the expression levels of miR-1271-5p were higher in osteoporotic tissues than that in adjacent nonosteoporotic tissues. The expression levels of FOXO1 were lower in osteoporotic tissues than that in adjacent nonosteoporotic tissues. And a negative correlation was found between miR-1271-5p and FOXO1 in osteoporotic tissues. Overexpression of miR-1271-5p downregulated FOXO1 and inhibited osteogenic differentiation in hMSCs. Overexpression of miR-1271-5p downregulated the expression of osteogenic markers and reduced ALP activity. In addition, ectopic expression of FOXO1 reversed the effect of miR-1271-5p on osteogenic differentiation. In conclusion, miR-1271-5p functioned as a therapeutic target of osteogenic differentiation in hMSCs by inhibiting FOXO1, which provides valuable insights into the use of miR-1271-5p as a target in the treatment of osteoporosis and other bone metabolic diseases.  相似文献   

8.
9.
In this study, we investigated the regulatory role of ganglioside GD1a in the differentiation of osteoblasts from human mesenchymal stem cells (hMSCs) by using lentivirus-containing short hairpin (sh)RNA to knockdown ST3 β-galactoside α-2, 3-sialyltransferase 2 (ST3Gal II) mRNA expression. After hMSCs were infected for 72 h with the lentivirus constructed with ST3Gal II shRNAs, the puromycin-resistant cells were selected and subcultured to produce hMSCs with ST3Gal II mRNA knockdown. The hMSCs established from human dental papilla abundantly expressed CD44 and CD105, but not CD45 and CD117. Osteoblasts that differentiated from normal hMSCs showed a significant increase in alkaline phosphatase (ALP) activity and ganglioside GD1a expression level compared with those in hMSCs. Lentiviral infection of hMSCs successfully induced a marked inhibition of ST3Gal II mRNA expression and caused a significant decrease in ALP activity and ganglioside GD1a expression. During osteoblastic differentiation, the increased ALP activity remarkably reduced by suppression of ganglioside GD1a expression by ST3Gal II shRNA. Ganglioside GD1a and ALP were mainly expressed in the cell body of hMSCs and osteoblasts with colocalization. The phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 mitogen-activated protein (MAP) kinase and epidermal growth factor receptor (EGFR) was significantly reduced in the osteoblasts that had differentiated from the hMSCs with ST3Gal II mRNA knockdown. These results suggest that ganglioside GD1a plays an important role in the regulation of osteoblastic differentiation of hMSCs through the activation of ERK 1/2 MAP kinase and EGFR.  相似文献   

10.
11.
12.
骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)具有很强的诱导间充质干细胞定向成骨分化的能力.但对于其所涉及的相关分子机理了解并不深入.利用BMP9重组腺病毒感染间充质干细胞,Western blot检测ERK1/2激酶的磷酸化,ERK1/2的特异性抑制剂PD98059阻断ERK1/2活性,或以RNA干扰抑制ERK1/2表达,通过体外细胞实验和体内动物实验,初步分析和揭示ERK1/2对于BMP9诱导的间充质干细胞成骨分化的调控作用及其可能机制.结果发现:BMP9可以促进ERK1/2激酶的磷酸化,ERK1/2抑制剂PD98059可增强由BMP9诱导的碱性磷酸酶(alkaline phosphatase,ALP)活性、骨桥蛋白(osteopontin,OPN)表达和钙盐沉积,并促进由BMP9诱导的Runx2基因的表达和转录活性,以及Smad经典途径的活化;而RNA干扰导致ERK1/2基因沉默同样也可进一步促进BMP9诱导的ALP活性和钙盐沉积,并促进BMP9诱导的间充质干细胞在裸鼠皮下异位成骨.因此,BMP9可以促进ERK1/2蛋白激酶的活化,而阻断ERK1/2蛋白激酶可进一步增强BMP9诱导的成骨分化,ERK1/2极可能对于BMP9诱导的间充质干细胞成骨分化起着负向调控作用.  相似文献   

13.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days’ culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days’ culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-β signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.  相似文献   

14.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

15.
Over the past decades, bone defects caused by illness or trauma have been the most common traumatic injuries in humans and treatment of orthopedic infections has always been a serious challenge to experts in the world. In this project, poly L-lactic acid (PLLA) nanofibrous scaffolds were synthesized as a nontoxic, eco-friendly, and cost-effective scaffold by the electrospinning technique. Then, the impact of PLLA on the cell proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs) was assayed in the presence and absence of donepezil hydrochloride (DH) which was prescribed in patients with Alzheimer's disease. Also, hMSCs were seeded on PLLA scaffold in the presence (PLLA-DH) and absence of 1 μg mL-1 of DH under osteogenic induction media. Osteogenic differentiation of hMSCs was assessed by specific bone-related tests including alkaline phosphatase (ALP) activity, Alizarin red and von Kossa staining, calcium content assay. Also, Osteocalcin and osteopontin were evaluated as osteogenic proteins as well as ALP, osteonectin, osteocalcin, collagen type I (Col-I) and Runx2 as osteogenic genes via immunocytochemistry (ICC) and Real-time PCR analyses. The obtained data showed the higher ALP enzyme activity and biomineralization, more intensity during von Kossa staining as well as the increase in the expression rate of osteogenic related gene and protein markers in differentiated hMSCs on PLLA-DH. In conclusion, the present study revealed that the combination of PLLA scaffold with DH provides a scope to develop a suitable matrix in bone tissue engineering applications.  相似文献   

16.
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.  相似文献   

17.
18.
The role of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway on the osteogenesis of progenitor and stem cells has received a lot of attention due to conflicting results in the literature. ERK1/2 has been reported to be both activating and inhibitory to the osteogenesis of different cell types under varying culture conditions. This study focused specifically on the role of ERK1/2 on the chondrogenesis and osteogenesis of mesenchymal stem cells (MSC) induced by cytokine exposure. Bone marrow-derived MSC were cultured in three-dimensional fibrin gel scaffolds and stimulated down the chondrogenic and osteogenic programs by addition of TGF-β3 to and osteogenic buffer media. Cells were cultured under control conditions (no cytokine supplementation), treated with TGF-β3 or treated with PD98059 + TGF-β3 for 7 days. RT-PCR results show that addition of TGF-β3 significantly upregulates the phosphorylation of ERK1/2 and induces the cells down the chondrogenic and osteogenic pathways (as demonstrated by the significant upregulation of aggrecan, sox9, collagen types 1 & 2 gene expressions). Inhibition of ERK1/2 phosphorylation with PD98059 led to the abolishment of the upregulation of chondrogenic and osteogenic-specific gene expressions. These results demonstrate that ERK1/2 is needed for the chondrogenic and osteogenic differentiation of MSC as induced by TGF-β3 supplementation.  相似文献   

19.
20.
该文主要探究Ghrelin对三氧化二砷(As2O3)导致的骨髓间充质干细胞(BMSCs)增殖和成骨分化的影响。BMSCs设为对照组、As2O3组、Ghrelin组和联合(As2O3+Ghrelin)组。MTT法检测细胞增殖能力;成骨诱导的第7天和第14天,Real-time PCR及Western blot分别检测成骨相关因子OPN、ALP、RUNX2的mRNA及蛋白表达;第21天,茜素红染色分析钙盐沉积情况。结果显示,细胞增殖能力Ghrelin组>对照组>联合组>As2O3组。与对照组比,As2O3组各因子表达均显著下调(P<0.05),Ghrelin组第14天OPN蛋白表达无显著变化,其余因子均上调(P<0.05);联合组与As2O3组比,第14天OPN基因表达和第7天ALP蛋白表达无显著差异,其余均显著上调(P<0.05)。钙盐沉积:Ghrelin组>对照组>联合组>As2O3组。提示0.5μmol/L As2O3抑制BMSCs增殖和成骨分化,600 ng/mL Ghrelin增强细胞增殖和成骨分化;且Ghrelin能减弱As2O3导致的BMSCs增殖和成骨分化抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号