首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since drug resistance is a complex and multifactorial event involving activation/repression of multiple biochemical pathways, we used a proteomic approach to study cisplatin resistance and drug response in human tumor cell lines. The cervix squamous cell carcinoma cell line A431 and its cisplatin-resistant subline, A431/Pt, were used as a model system. The experimental set-up involved not just a two-way comparison of the control vs. the drug-resistant cell line, but also an acute cisplatin treatment of both cell lines, leading to a four-way comparison, as follows: 1) A431 vs. A431/Pt cells; 2) A431 vs. A431 cisplatin exposed cells; 3) A431/Pt vs. A431/Pt cisplatin exposed cells; 4) A431 cisplatin exposed cells vs. A431/Pt cisplatin exposed cells. We found modulation of proteins, which could be classified under various categories, such as molecular chaperones (e.g. heat-shock proteins HSP60, HSP90, HSC71, heat-shock cognate 71 kDa protein), Ca2+-binding proteins (e.g. calmodulin, calumenin), proteins involved in drug detoxification (such as peroxiredoxins PRX 2 and PRX 6, and glutathione-S-transferase, GST), anti-apoptotic proteins (such as 14-3-3 switched on in cisplatin-exposed cells) and ion channels (such as VDAC-1, voltage-dependent anion-selective channel). In particular, the basal levels of HSC71 and HSP60 were increased in A431/Pt cells as compared to A431 cells, and cisplatin exposure resulted in up-regulation of HSP60 and HSP90 only in A431 cells. Moreover, cisplatin exposure up-regulated the anti-apoptotic 14-3-3 protein in both cell lines, GST in sensitive cells and PRX6 in A431/Pt cells. These findings are consistent with a constitutive expression of defence factors by resistant cells and with activation by cisplatin of mechanisms acting to protect cells from drug-induced damage. This pattern of response, also observed in parental cells, could reflect an intrinsic resistance of this tumor type.  相似文献   

2.
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.  相似文献   

3.
An important step in copper homeostasis is delivery of copper to a specific P-type ATPase in the Golgi apparatus (Ccc2 in yeast, ATP7A and ATP7B in humans) by a small copper chaperone protein (Atx1 in yeast, ATOX1 in humans). Atx1 and ATOX1 both contain an MXCXXC motif that is also present in Ccc2 (two motifs) and ATP7A/B (six motifs). Protein-protein interactions probably require coordination of one Cu(I) by cysteines from both MXCXXC motifs. We applied yeast two-hybrid analysis to screen systematically all possible interactions between MXCXXC-containing domains in these proteins. We demonstrate that ATOX1 and Atx1 preferentially interact with domains 2 and 4 of ATP7B and that Atx1 interacts with both Ccc2 domains. All combinations show a remarkable bell-shaped dependency on copper concentration that is maximal just below normal copper levels. Our results suggest that yeast two-hybrid analysis can be used to study the intracellular copper status of a cell.  相似文献   

4.
The Wilson disease protein (ATP7B) is a copper-transporting ATPase that is responsible for regulating copper homeostasis in human tissues. ATP7B is associated with cancer resistance to cisplatin, one of the most widely used anticancer drugs. This minireview discusses the possible mechanisms of tumor resistance to cisplatin mediated by ATP7B. Cisplatin binds to the N-terminal cytosolic domain of ATP7B, which contains multiple copper-binding sites. Active platinum efflux catalyzed by ATP7B is unlikely to significantly contribute to cisplatin resistance in vivo. Transient platinum sequestration in the metal-binding domain followed by transfer to an acceptor protein or a low molecular weight compound is proposed as an alternative mechanism of cisplatin detoxification in the cell.  相似文献   

5.
Neurodegenerative illnesses are characterized by aberrant metabolism of biometals such as copper (Cu), zinc (Zn) and iron (Fe). However, little is known about the metabolic effects associated with altered metal homeostasis. In this study, we used an in vitro model of altered Cu homeostasis to investigate how Cu regulates cellular protein expression. Human fibroblasts containing a natural deletion mutation of the Menkes (MNK) ATP7A Cu transporter (MNK deleted) were compared to fibroblasts overexpressing ATP7A (MNK transfected). Cultures of MNK-transfected (Low-Cu) cells exhibited 95% less intracellular Cu than MNK-deleted (High-Cu) cells. Comparative proteomic analysis of the two cell-lines was performed using antibody microarrays, and significant differential protein expression was observed between Low-Cu and High-Cu cell-lines. Western blot analysis confirmed the altered protein expression of Ku80, nexilin, L-caldesmon, MAP4, Inhibitor 2 and DNA topoisomerase I. The top 50 altered proteins were analysed using the software program Pathway Studio (Ariadne Genomics) and revealed a significant over-representation of proteins involved in DNA repair and maintenance. Further analysis confirmed that expression of the DNA repair protein Ku80 was dependent on cellular Cu homeostasis and that Low-Cu levels in fibroblasts resulted in elevated susceptibility to DNA oxidation.  相似文献   

6.
Recent studies in yeast, mouse and human cells suggest that the conserved metal binding transporters of the Cu homeostasis pathway can mediate resistance to Pt drugs in cancer cells. This review summarizes the data available from these studies. The observation that cells selected for resistance to Cu or the Pt drugs display bidirectional cross-resistance, parallel defects in the transport of Cu and the Pt drugs and altered expression of Cu transporters is consistent with the concept that the Cu homeostasis proteins regulate sensitivity to the Pt drugs by influencing their uptake, efflux and intracellular distribution. This model is supported by the finding that when mammalian and yeast cells are genetically engineered to express altered levels of the Cu transporters they exhibit altered sensitivity to Pt drugs and are defective in intracellular Pt accumulation due to altered uptake and/or efflux rates. Negative associations between the expression of ATP7A and ATP7B and the outcome of Pt therapy further support the significance of the Cu homeostasis proteins as both markers of and contributors to Pt resistance.  相似文献   

7.
The MNK (Menkes disease protein; ATP7A) is a major copper- transporting P-type ATPase involved in the delivery of copper to cuproenzymes in the secretory pathway and the efflux of excess copper from extrahepatic tissues. Mutations in the MNK (ATP7A) gene result in Menkes disease, a fatal neurodegenerative copper deficiency disorder. Currently, detailed biochemical and biophysical analyses of MNK to better understand its mechanisms of copper transport are not possible due to the lack of purified MNK in an active form. To address this issue, we expressed human MNK with an N-terminal Glu-Glu tag in Sf9 [Spodoptera frugiperda (fall armyworm) 9] insect cells and purified it by antibody affinity chromatography followed by size-exclusion chromatography in the presence of the non-ionic detergent DDM (n-dodecyl beta-D-maltopyranoside). Formation of the classical vanadate-sensitive phosphoenzyme by purified MNK was activated by Cu(I) [EC50=0.7 microM; h (Hill coefficient) was 4.6]. Furthermore, we report the first measurement of Cu(I)-dependent ATPase activity of MNK (K0.5=0.6 microM; h=5.0). The purified MNK demonstrated active ATP-dependent vectorial 64Cu transport when reconstituted into soya-bean asolectin liposomes. Together, these data demonstrated that Cu(I) interacts with MNK in a co-operative manner and with high affinity in the sub-micromolar range. The present study provides the first biochemical characterization of a purified full-length mammalian copper-transporting P-type ATPase associated with a human disease.  相似文献   

8.
Copper (Cu) plays a critical role in the developing foetus, but virtually nothing is known concerning the regulation of its uptake and metabolism in the placenta. In this issue of the Biochemical Journal, Hardman and colleagues, using a model of placental trophoblasts in culture, identify differential hormonal regulation of two copper-transporting ATPases; namely, those responsible for Menkes disease (ATP7A; MNK) and Wilson disease (ATP7B; WND). Insulin and oestrogen, which are essential during gestation, up-regulate MNK and this leads to trafficking of the MNK protein from the Golgi to the basolateral membrane, resulting in increased Cu efflux. At the same time, insulin decreased WND levels, and this leads to intracellular sequestration of the protein to a perinuclear region that reduces apical Cu release. As such, this results in a concerted flux of Cu from the basolateral surface of the trophoblast that would potentially be used by the developing foetus. An integrated model of vectorized Cu transport is proposed, which involves co-ordinated expression of transporters, organelle interactions and probable protein-protein interactions. The findings have wider implications for considering general models of intracellular metal transport.  相似文献   

9.
The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein (ATP7A), was investigated in solution using heteronuclear NMR. The study was carried out through titrations involving HAH1 and either the second or the fifth soluble domains of ATP7A (MNK2 and MNK5, respectively), in the presence of copper(I). The copper-transfer properties of MNK2 and MNK5 are similar, and differ significantly from those previously observed for the yeast homologous system. In particular, no stable adduct is formed between either of the MNK domains and HAH1. The copper(I) transfer reaction is slow on the time scale of the NMR chemical shift, and the equilibrium is significantly shifted towards the formation of copper(I)-MNK2/MNK5. The solution structures of both apo- and copper(I)-MNK5, which were not available, are also reported. The results are discussed in comparison with the data available in the literature for the interaction between HAH1 and its partners from other spectroscopic techniques.  相似文献   

10.
11.
Programmed cell death or apoptosis is a mechanism for the elimination of cells that occurs not only in physiological processes but also in drug-induced tumor cell death. Thus, because cisplatin, cis-diamminechloroplatinum (II), produces important damages on the DNA inducing apoptosis in several cell lines it has become a widely used antitumor drug. However, cisplatin possesses some dose-limiting toxicities mainly nephrotoxicity. Pt(IV) complexes, such as iproplatin, ormaplatin, and JM216 are a new class of platinum complexes that exhibits less toxicity than cisplatin. Some of these complexes have shown significant antitumor activity and a low cross-resistance to cisplatin. In the present paper, we have analyzed the DNA binding mode and the cytotoxicity of a novel Pt(IV)-bis (monoglutarate) complex. The data show that this novel complex produces DNA interstrand cross-links to a higher extent and with a faster kinetics than cisplatin. Also the Pt(IV)-bis (monoglutarate) complex kills glioma cells at drug concentrations significantly lower than those of cisplatin. Interestingly, this Pt(IV) complex produces in the glioma cells characteristic features of apoptosis such as 'DNA laddering' and fragmented nuclei. Moreover, the p53 protein accumulates early in glioma cells as a result of Pt(IV)-bis (monoglutarate) treatment. These data indicate that the Pt(IV)-bis (monoglutarate) complex induces apoptosis in glioma cells through a p53-dependent pathway.  相似文献   

12.
13.
Cisplatin (CisPt) is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/B proteins. CisPt has been shown to bind to ATP7B, resulting in vesicle sequestering of the drug. In addition, we and others showed that the apo-form of Atox1 could interact with CisPt in vitro and in vivo. Since the function of Atox1 is to transport copper (Cu) ions, it is important to assess how CisPt binding depends on Cu-loading of Atox1. Surprisingly, we recently found that CisPt interacted with Cu-loaded Atox1 in vitro at a position near the Cu site such that unique spectroscopic features appeared. Here, we identify the binding site for CisPt in the Cu-loaded form of Atox1 using strategic variants and a combination of spectroscopic and chromatographic methods. We directly prove that both metals can bind simultaneously and that the unique spectroscopic signals originate from an Atox1 monomer species. Both Cys in the Cu-site (Cys12, Cys15) are needed to form the di-metal complex, but not Cys41. Removing Met10 in the conserved metal-binding motif makes the loop more floppy and, despite metal binding, there are no metal-metal electronic transitions. In silico geometry minimizations provide an energetically favorable model of a tentative ternary Cu-Pt-Atox1 complex. Finally, we demonstrate that Atox1 can deliver CisPt to the fourth metal binding domain 4 of ATP7B (WD4), indicative of a possible drug detoxification mechanism.  相似文献   

14.
BACKGROUND/AIMS: The copper transporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND) are essential for normal copper transport in the human body. The placenta is the key organ in copper supply to the fetus during pregnancy and it is one of the few organs in the body to express both of the ATPases. The placenta therefore provides a unique opportunity to elucidate the specific roles of these transporters within the one cell type. METHODS/RESULTS: Using polarized placental Jeg-3 cells, siRNA technology and radio-labelled 64Cu transport assays, MNK and WND were shown to have distinct roles in the vectorial transport of copper. MNK transported copper from the cell via the basolateral membrane and in contrast, WND transported copper from the apical membrane. Inactivation of MNK resulted in decreased activity of two important cuproenzymes, lysyl oxidase and Cu/Zn-superoxide dismutase. CONCLUSIONS: Overall, these results provide definitive evidence for distinct roles of MNK and WND in the human placenta, and are consistent with a role for MNK in the transport of copper into the fetal circulation, and through delivery of copper to placental cuproenzymes, whilst WND contributes to the maintenance of placental copper homeostasis by transporting copper to the maternal circulation.  相似文献   

15.
We previously observed that in yeast cisplatin activates different pathways accounting for stress response. Here, we investigated whether genes involved in yeast drug response were modulated by cisplatin in human tumor cell lines (A2780, IGROV-1, A431, U2-OS) including cisplatin-resistant sublines (A2780/BBR, IGROV-1/Pt1, A431/Pt and U2-OS/Pt). Factors and pathways involved in stress response (glutathione-S-transferase, proteasome, checkpoint control and recombinational repair) were increased by cisplatin in human tumor sensitive and resistant cells. Moreover, sensitization to cisplatin by pharmacologically targeting glutathione or proteasome was observed in sensitive and resistant cells. Interestingly, only in IGROV-1/Pt1 cells, in which cisplatin up-regulated HSP70 and HSP90, targeting of HSP90 resulted in sensitization of resistant cells, suggesting a protective role of stress response. In conclusion, the present findings support the potential relevance of interfering with heat shock protein response to increase cisplatin cytotoxicity in resistant cells. Overall, pathways activated by cisplatin in human tumor cells appear cell-type specific, at least in part reflecting the stress response observed in yeast.  相似文献   

16.
The Cu-ATPase ATP7A (MNK) is localized in the trans-Golgi network (TGN) and relocalizes in the plasma membrane via vesicle-mediated traffic following exposure of the cells to high concentrations of copper. Rab proteins are organelle-specific GTPases, markers of different endosomal compartments; their role has been recently reviewed (Trends Cell Biol. 11(2001) 487). In this article we analyze the endosomal pathway of trafficking of the MNK protein in stably transfected clones of CHO cells, expressing chimeric Rab5-myc or Rab7-myc proteins, markers of early or late endosome compartments, respectively. We demonstrate by immunofluorescence and confocal and electron microscopy techniques that the increase in the concentration of copper in the medium (189 microM) rapidly induces a redistribution of the MNK protein from early sorting endosomes, positive for Rab5-myc protein, to late endosomes, containing the Rab7-myc protein. Cell fractionation experiments confirm these results; i.e., the MNK protein is recruited to the endosomal fraction on copper stimulation and colocalizes with Rab5 and Rab7 proteins. These findings allow the first characterization of the vesicles involved in the intracellular routing of the MNK protein from the TGN to the plasma membrane, a key mechanism allowing appropriate efflux of copper in cells grown in high concentrations of the metal.  相似文献   

17.
The P-type ATPase affected in Wilson disease, ATP7B, is a key liver protein required to regulate and maintain copper homeostasis. When hepatocytes are exposed to elevated copper levels, ATP7B traffics from the trans-Golgi network toward the biliary canalicular membrane to excrete excess copper into bile. The N-terminal region of ATP7B contains six metal-binding sites (MBS), each with the copper-binding motif MXCXXC. These sites are required for the activity and copper-regulated intracellular redistribution of ATP7B. Two proteins are known to interact with the ATP7B N-terminal region: the copper chaperone ATOX1 that delivers copper to ATP7B, and COMMD1 (MURR1) that is potentially involved in vesicular copper sequestration. To identify additional proteins that interact with ATP7B and hence are involved in copper homeostasis, a yeast two-hybrid approach was employed to screen a human liver cDNA library. The dynactin subunit p62 (dynactin 4; DCTN4) was identified as an interacting partner, and this interaction was confirmed by co-immunoprecipitation from mammalian cells. The dynactin complex binds cargo, such as vesicles and organelles, to cytoplasmic dynein for retrograde microtubule-mediated trafficking and could feasibly be involved in the copper-regulated trafficking of ATP7B. The ATP7B/p62 interaction required copper, the metal-binding CXXC motifs, and the region between MBS 4 and MBS 6 of ATP7B. The p62 subunit did not interact with the related copper ATPase, ATP7A. We propose that the ATP7B interaction with p62 is a key component of the copper-induced trafficking pathway that delivers ATP7B to subapical vesicles of hepatocytes for the removal of excess copper into bile.  相似文献   

18.
Effect of cisplatin upon expression of in vivo immune tumor resistance   总被引:1,自引:0,他引:1  
The major intent of cancer treatment with cytotoxic drugs is direct tumor cell damage, but some of these drugs have been shown to be immunomodulatory. Cisplatin is a widely used cytotoxic drug that has been combined with biological response modifiers in recent clinical trials. To evaluate further whether cisplatin may independently alter the level of host resistance against tumor growth, the drug was tested in the Mc7 sarcoma rat tumor model. The expression of in vivo tumor resistance against Mc7 sarcoma in syngeneic Wistar rats is mediated by circulating non-cytotoxic T lymphocytes. These cells interact specifically with tumor cells to generate cytotoxic effectors locally at the site of a tumor challenge. Activities of these components of expression of tumor resistance were measured in vivo after administration of cisplatin and dose-dependent effects were found. Low-dose cisplatin (0.3 mg/kg) increased the activity of the circulating lymphocytes that mediate tumor resistance, and high-dose cisplatin (9 mg/kg) suppressed both mediator lymphocyte activity and the generation of antitumor effector mechanisms. These studies suggest that low-dose cisplatin may be immunomodulatory and combining it with biological response modifiers might be a useful strategy. However, high-dose cisplatin given with biological response modifiers may negate potential immunomodulatory activities of such agents.  相似文献   

19.

Background

Copper is an essential trace element that plays a critical role in the survival of all living organisms. Menkes disease and occipital horn syndrome (OHS) are allelic disorders of copper transport caused by defects in a X-linked gene (ATP7A) that encodes a P-type ATPase that transports copper across cellular membranes, including the trans-Golgi network. Genetic studies in yeast recently revealed a new family of cytoplasmic proteins called copper chaperones which bind copper ions and deliver them to specific cellular pathways. Biochemical studies of the human homolog of one copper chaperone, ATOX1, indicate direct interaction with the Menkes/OHS protein. Although no disease-associated mutations have been reported in ATOX1, mice with disruption of the ATOX1 locus demonstrate perinatal mortality similar to that observed in the brindled mice (Mobr), a mouse model of Menkes disease. The cDNA sequence for ATOX1 is known, and the genomic organization has not been reported.

Results

We determined the genomic structure of ATOX1. The gene contains 4 exons spanning a genomic distance of approximately 16 kb. The translation start codon is located in the 3' end of exon 1 and the termination codon in exon 3. We developed a PCR-based assay to amplify the coding regions and splice junctions from genomic DNA. We screened for ATOX1 mutations in two patients with classical Menkes disease phenotypes and one individual with occipital horn syndrome who had no alterations detected in ATP7A, as well as an adult female with chronic anemia, low serum copper and evidence of mild dopamine-beta-hydroxylase deficiency and no alterations in the ATOX1 coding or splice junction sequences were found.

Conclusions

In this study, we characterized the genomic structure of the human copper chaperone ATOX1 to facilitate screening of this gene from genomic DNA in patients whose clinical or biochemical phenotypes suggest impaired copper transport.
  相似文献   

20.
ATP7A is a P-type ATPase involved in copper(I) homeostasis in humans. It possesses a long N-terminal cytosolic tail containing six domains that are individually folded and capable of binding one copper(I) ion each. We investigated the entire N-terminal tail (MNK1-6) in solution by NMR spectroscopy and addressed its interaction with copper(I) and with copper(I)-HAH1, the physiological partner of ATP7A. At copper(I)-HAH1:MNK1-6 ratios of up to 3:1, thus encompassing the range of protein ratios in vivo, both the first and fourth domain of the tail formed a metal-mediated adduct with HAH1 whereas the sixth domain was simultaneously able to partly remove copper(I) from HAH1. These processes are not dependent on one another. In particular, formation of the adducts is not necessary for copper(I) transfer from HAH1 to the sixth domain. The present data, together with available in vivo studies, suggest that the localization of ATP7A between the trans-Golgi network and the plasma membrane may be regulated by the accumulation of the adducts with HAH1, whereas the main role of domains 5 and 6 is to assist copper(I) translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号