首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of the copper-binding centre of Panulirus interruptus haemocyanin led to the discovery of a pseudo 2-fold axis relating two helical pairs surrounding and co-ordinating the two copper ions. The pseudo 2-fold symmetry relating one helical pair, co-ordinating Cu-A, to the second helical pair co-ordinating Cu-B is quite precise with 31 equivalent C alpha atoms having a root-mean-square deviation of only 1.47 A. The 2-fold consists of a rotation of 174.6 degrees and a translation parallel to the rotation axis of 0.7 A. After superposition of the helical pairs, the two copper ions are within 1.1 A and the three C alpha atoms of the histidine ligands of Cu-A are within a root-mean-square deviation of 1.0 A from the C alpha atoms of the histidine residues co-ordinating Cu-B. Of the superimposed residues, 26% are identical in sequence. These data suggest that the current oxygen-binding centre of arthropodan haemocyanins is the result of dimerization, gene duplication and gene fusion of an ancestral mono-copper-binding helical pair. This suggestion is supported by the recent discovery that in the sequence of functional domains of molluscan haemocyanins only amino acid sequence homology with the arthropodan Cu-B helical pair has been found and no evidence for similarity with a Cu-A binding helical pair was observed. This provides strong evidence that a mono-copper-binding helical pair has been the ancestor of both the arthropodan and molluscan haemocyanins. Turning to the Fe-binding helical pairs in haemerythrins, it appears that they are less similar to each other than the two Cu-binding helical pairs in arthropodan haemocyanins. Nevertheless, the Fe-B haemerythrin helical pair superimposes well onto the Cu-A helical pair of Panulirus haemocyanin. A root-mean-square deviation of 1.9 A for 24 equivalent C alpha carbon atoms is obtained, while Fe-B deviates 1.4 A from Cu-A after superposition of the helices. Moreover, the three histidine ligands of the Cu-A helical pair are equivalent with three histidine ligands of the Fe-B pair. The structural similarity and correspondence in metal-binding ligands suggests that both haemocyanins and haemerythrins have originated from an ancestral mono-metal-binding helical pair having two ligands provided by the first helix and one ligand by the second helix.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Using an iterative approach, we have placed monovalent (“solvated”) and divalent (both solvated and “unsolvated”) ions around a 20 base pair sequence, (dC-dG)10, in standard B and ZI conformations. The molecule with its attendant ions in the various conformations is subjected to to energy minimization using the program AMBER. In the presence of solvated cations (both monovalent as well as divalent) the B form is more stable than the Z form. However, direct binding with the unsolvated divalent cations makes the Z form more stable. Groove-binding provides some insight into the facility with which the B to Z transition occurs with higher charged cations. In the presence of unsolvated divalent cations, the Z form binds more charges at the groove through more ligands, compared to the B form. The orientation around the CpG phosphates in the minor groove of the Z form is found ideal for ion binding. Detailed molecular models for the ion binding have been developed. In general, phosphate groups dominate the ion binding. Large perturbations are seen mostly in the angles that control the phosphate orientation.  相似文献   

3.
Shortly after a surface is submerged in the sea, a conditioning film is generally formed by adsorption of organic molecules, such as polysaccharides. This could affect transport of molecules and ions between the seawater and the surface. An artificial seawater model system was developed to understand how adsorbed polysaccharides impact copper binding by glutaraldehyde-crosslinked polyethyleneimine coatings. Coating performance was also determined when competed against copper-chelating EDTA. Polysaccharide adsorption and copper binding and distribution were investigated using advanced analytical techniques, including depth-resolved time-of-flight secondary ion mass spectroscopy, grazing incidence X-ray absorption near-edge spectroscopy, quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy. In artificial seawater, the polysaccharides adsorbed in a swollen state that copper readily penetrated and the glutaraldehyde-polyethyleneimine coatings outcompeted EDTA for copper binding. Furthermore, the depth distribution of copper species was determined with nanometre precision. The results are highly relevant for copper-binding and copper-releasing materials in seawater.  相似文献   

4.
Two new ligands of transition metal cations based on galactose-derived scaffolds were synthesised: 1,5-anhydro-2-deoxy-3,4,6-tri-O-(2-picolyl)-D-galactitol and methyl 2-deoxy-3,4,6-tri-O-(2-picolyl)-alpha-D-galactopyranoside. These ligands permitted the isolation as single crystals of a Co(II) and a Ni(II) complex, respectively. The structures of both complexes were determined by X-ray crystallography showing a coordination sphere including sugar-bound oxygen atoms. The sugar-derived ligands were found to be in both cases in high energy conformations in the crystal structures of the complexes. These conformations contain an arrangement of sugar-bound oxygen atoms similar to those observed in polyol-metal and carbohydrate-metal complexes.  相似文献   

5.
By using single wavelength anomalous diffraction phasing based on the anomalous signal from copper atoms, the crystal structure of atratoxin was determined at the resolution of 1.5 A and was refined to an ultrahigh resolution of 0.87 A. The ultrahigh resolution electron density maps allowed the modeling of 38 amino acid residues in alternate conformations and the location of 322 of 870 possible hydrogen atoms. To get accurate information at the atomic level, atratoxin-b (an analog of atratoxin with reduced toxicity) was also refined to an atomic resolution of 0.92 A. By the sequence and structural comparison of these two atratoxins, Arg(33) and Arg(36) were identified to be critical to their varied toxicity. The effect of copper ions on the distribution of hydrogen atoms in atratoxin was discussed, and the interactions between copper ions and protein residues were analyzed based on a statistical method, revealing a novel pentahedral copper-binding motif.  相似文献   

6.
The Escherichia coli histidine binding protein HisJ is a type II periplasmic binding protein (PBP) that preferentially binds histidine and interacts with its cytoplasmic membrane ABC transporter, HisQMP2, to initiate histidine transport. HisJ is a bilobal protein where the larger Domain 1 is connected to the smaller Domain 2 via two linking strands. Type II PBPs are thought to undergo “Venus flytrap” movements where the protein is able to reversibly transition from an open to a closed conformation. To explore the accessibility of the closed conformation to the apo state of the protein, we performed a set of all‐atom molecular dynamics simulations of HisJ starting from four different conformations: apo‐open, apo‐closed, apo‐semiopen, and holo‐closed. The simulations reveal that the closed conformation is less dynamic than the open one. HisJ experienced closing motions and explored semiopen conformations that reverted to closed forms resembling those found in the holo‐closed state. Essential dynamics analysis of the simulations identified domain closing/opening and twisting as main motions. The formation of specific inter‐hinge strand and interdomain polar interactions contributed to the adoption of the closed apo‐conformations although they are up to 2.5‐fold less prevalent compared with the holo‐closed simulations. The overall sampling of the closed form by apo‐HisJ provides a rationale for the binding of unliganded PBPs with their cytoplasmic membrane ABC transporters. Proteins 2014; 82:386–398. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Cu(I) dicoordination with thiolate ligands is not common. Yet, different from its homologue proteins, human copper chaperone is known to bind Cu(I) using this low coordination number while binding Cu(I) only via the two conserved Cysteine residues, Cys12 and Cys15. Based on structural analysis, this work determines that the protein possesses two distinct conformations referred to as “in” and “out” due to the relative positioning of Cys12 (one of Cu(I) binding residues). The “out” conformation, with Cys12 pointing out, imposes a buried Cu(I) position, whereas the “in” conformation with Cys12 pointing inwards results in a more exposed Cu(I) thus, available for transfer. Using QM/MM methods along with thermodynamic cycles these two conformations are shown to exhibit different coordination preference, suggesting that the protein has evolved to have a unique Cu(I) protection mechanism. It is proposed that the “out” conformation with a preference to dicoordination prevents Cu(I) interaction with external ligands and/or Cu(I) release to the solvent, whereas the “in” conformation with preference to tricoordinated Cu(I), facilitates Cu(I) transfer to target proteins, where additional ligands are involved. Proteins 2013; 81:1411–1419. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Structural and kinetic data show that Arg-599 of β-galactosidase plays an important role in anchoring the "open" conformations of both Phe-601 and an active-site loop (residues 794-803). When alanine was substituted for Arg-599, the conformations of Phe-601 and the loop shifted towards the "closed" positions because interactions with the guanidinium side chain were lost. Also, Phe-601, the loop, and Na+, which is ligated by the backbone carbonyl of Phe-601, lost structural order, as indicated by large B-factors. IPTG, a substrate analog, restored the conformations of Phe-601 and the loop of R599A-β-galactosidase to the open state found with IPTG-complexed native enzyme and partially reinstated order. ?-Galactonolactone, a transition state analog, restored the closed conformations of R599A-β-galactosidase to those found with ?-galactonolactone-complexed native enzyme and completely re-established the order. Substrates and substrate analogs bound R599A-β-galactosidase with less affinity because the closed conformation does not allow substrate binding and extra energy is required for Phe-601 and the loop to open. In contrast, transition state analog binding, which occurs best when the loop is closed, was several-fold better. The higher energy level of the enzyme?substrate complex and the lower energy level of the first transition state means that less activation energy is needed to form the first transition state and thus the rate of the first catalytic step (k2) increased substantially. The rate of the second catalytic step (k3) decreased, likely because the covalent form is more stabilized than the second transition state when Phe-601 and the loop are closed. The importance of the guanidinium group of Arg-599 was confirmed by restoration of conformation, order, and activity by guanidinium ions.  相似文献   

9.
Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.  相似文献   

10.
Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57-91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91-115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91-115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.  相似文献   

11.
The copper-binding site of lysyl oxidase remains extremely poorly characterized and although models have been suggested for copper(II) coordination by three histidine ligands, as has been found for other copper-containing amine oxidases, there has been no experimental confirmation of these suggestions. In this work, two synthetic peptides with 24 and 34-amino acid residues, respectively, were chosen from the highly conserved histidine-rich sequence previously suggested as the copper-binding region of lysyl oxidase. These peptides each bind one equivalent of Cu(II), at the same site in the two peptides. Spectroscopic (NMR, electron paramagnetic resonance (EPR), CD, visible absorption and fluorescence) techniques were employed to investigate the nature of the resulting complexes. The results indicate that at neutral pH three histidine ring nitrogen atoms and one carboxylate oxygen atom coordinate as the in-plane ligands of the copper, which is in an approximately tetragonally-distorted octahedral geometry. Modeling of the copper-peptides using the consistent force field (CFF91) produces a minimum energy configuration with three histidines and one water molecule as the copper ligands. CD, EPR and fluorescence results are reported for lysyl oxidase and compared with results for the peptides.  相似文献   

12.
The stable conformations of GABA(A)-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for alpha5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors.  相似文献   

13.
Deng NJ  Yan L  Singh D  Cieplak P 《Biophysical journal》2006,90(11):3865-3879
According to experimental data, binding of the Cu(2+) ions destabilizes the native state of beta2-microglobulin (beta2m). The partial unfolding of the protein was generally considered an early step toward fibril formation in dialysis-related amyloidosis. Recent NMR studies have suggested that the destabilization of the protein might be achieved through increased flexibility upon Cu(2+) binding. However, the molecular mechanism of destabilization due to Cu(2+), its role in amyloid formation, and the relative contributions of different potential copper-binding sites remain unclear. To elucidate the effect of ion ligation at atomic detail, a series of molecular dynamics simulations were carried out on apo- and Cu(2+)-beta2m systems in explicit aqueous solutions, with varying numbers of bound ions. Simulations at elevated temperatures (360 K) provide detailed pictures for the process of Cu(2+)-binding-induced destabilization of the native structure at the nanosecond timescale, which are in agreement with experiments. Conformational transitions toward partially unfolded states were observed in protein solutions containing bound copper ions at His-31 and His-51, which is marked by an increase in the protein vibrational entropy, with TDeltaS(vibr) ranging from 30 to 69 kcal/mol. The binding of Cu(2+) perturbs the secondary structure and the hydrogen bonding pattern disrupts the native hydrophobic contacts in the neighboring segments, which include the beta-strand D2 and part of the beta-strand E, B, and C and results in greater exposure of the D-E loop and the B-C loop to the water environment. Analysis of the MD trajectories suggests that the changes in the hydrophobic environment near the copper-binding sites lower the barrier of conformational transition and stabilize the more disordered conformation. The results also indicate that the binding of Cu(2+) at His-13 has little effect on the conformational stability, whereas the copper-binding site His-31, and to a lesser extent His-51, are primarily responsible for the observed changes in the protein conformation and dynamics.  相似文献   

14.
The ribose-binding protein (RBP) is a sugar-binding bacterial periplasmic protein whose function is associated with a large allosteric conformational change from an open to a closed conformation upon binding to ribose. The crystal structures of RBP in open and closed conformations have been solved. It has been hypothesized that the open and closed conformations exist in a dynamic equilibrium in solution, and that sugar binding shifts the population from open conformations to closed conformations. Here, we study by computer simulations the thermodynamic changes that accompany this conformational change, and model the structural changes that accompany the allosteric transition, using umbrella sampling molecular dynamics and the weighted histogram analysis method. The open state is comprised of a diverse ensemble of conformations; the open ribose-free X-ray crystal conformations being representative of this ensemble. The unligated open form of RBP is stabilized by conformational entropy. The simulations predict detectable populations of closed ribose-free conformations in solution. Additional interdomain hydrogen bonds stabilize this state. The predicted shift in equilibrium from the open to the closed state on binding to ribose is in agreement with experiments. This is driven by the energetic stabilization of the closed conformation due to ribose-protein interactions. We also observe a significant population of a hitherto unobserved ribose-bound partially open state. We believe that this state is the one that has been suggested to play a role in the transfer of ribose to the membrane-bound permease complex.  相似文献   

15.
The binding of 64Cu to the water-soluble form of dopamine beta-monooxygenase from bovine adrenal medulla was studied in reconstitution and exchange experiments using high-performance size-exclusion gel chromatography. The reconstitution experiments provide evidence for a specific binding of four copper atoms/enzyme tetramer using either Cu(I) or Cu(II), but some weaker copper-binding sites were observed in the presence of a large excess of copper. The exchanges of both Cu(I) and Cu(II) in this protein are so rapid that exact half-lives for the exchange reactions can not be obtained by the present method. The results indicate, however, that the half-life for the exchange of the enzyme-bound copper in the holoenzyme with a twofold excess of 64Cu(II) at pH 6.1 was about 1 min, whereas the exchange of Cu(I) measured at similar conditions with ascorbate present, was complete in 1 min. This is by far the most rapid exchange reported for any copper-protein, and the results points to a unique copper-binding site in this enzyme.  相似文献   

16.
Structural characterization of human S100A16, a low-affinity calcium binder   总被引:1,自引:0,他引:1  
The homodimeric structure of human S100A16 in the apo state has been obtained both in the solid state and in solution, resulting in good agreement between the structures with the exception of two loop regions. The homodimeric solution structure of human S100A16 was also calculated in the calcium(II)-bound form. Differently from most S100 proteins, the conformational rearrangement upon calcium binding is minor. This characteristic is likely to be related to the weak binding affinity of the protein for the calcium(II) ions. In turn, this is ascribed to the lack of the glutamate residue at the end of the S100-specific N-domain binding site, which in most S100 proteins provides two important side chain oxygen atoms as calcium(II) ligands. Furthermore, the presence of hydrophobic interactions stronger than for other S100 proteins, present in the closed form of S100A16 between the third and fourth helices, likely make the closed structure of the second EF-hand particularly stable, so even upon calcium(II) binding such a conformation is not disrupted.  相似文献   

17.
Prion diseases are a class of fatal neurodegenerative disorders characterized by brain spongiosis, synaptic degeneration, microglia and astrocytes activation, neuronal loss and altered redox control. These maladies can be sporadic, iatrogenic and genetic. The etiological agent is the prion, a misfolded form of the cellular prion protein, PrP(C). PrP(C) interacts with metal ions, in particular copper and zinc, through the octarepeat and non-octarepeat binding sites. The physiological implication of this interaction is still unclear, as is the role of metals in the conversion. Since prion diseases present metal dyshomeostasis and increased oxidative stress, we described the copper-binding site located in the human C-terminal domain of PrP-HuPrP(90-231), both in the wild-type protein and in the protein carrying the pathological mutation Q212P. We used the synchrotron-based X-ray absorption fine structure technique to study the Cu(II) and Cu(I) coordination geometries in the mutant, and we compared them with those obtained using the wild-type protein. By analyzing the extended X-ray absorption fine structure and the X-ray absorption near-edge structure, we highlighted changes in copper coordination induced by the point mutation Q212P in both oxidation states. While in the wild-type protein the copper-binding site has the same structure for both Cu(II) and Cu(I), in the mutant the coordination site changes drastically from the oxidized to the reduced form of the copper ion. Copper-binding sites in the mutant resemble those obtained using peptides, confirming the loss of short- and long-range interactions. These changes probably cause alterations in copper homeostasis and, consequently, in redox control.  相似文献   

18.
Sampling receptor flexibility is challenging for database docking. We consider a method that treats multiple flexible regions of the binding site independently, recombining them to generate different discrete conformations. This algorithm scales linearly rather than exponentially with the receptor's degrees of freedom. The method was first evaluated for its ability to identify known ligands of a hydrophobic cavity mutant of T4 lysozyme (L99A). Some 200000 molecules of the Available Chemical Directory (ACD) were docked against an ensemble of cavity conformations. Surprisingly, the enrichment of known ligands from among a much larger number of decoys in the ACD was worse than simply docking to the apo conformation alone. Large decoys, accommodated in the larger cavity conformations sampled in the ensemble, were ranked better than known small ligands. The calculation was redone with an energy correction term that considered the cost of forming the larger cavity conformations. Enrichment improved, as did the balance between high-ranking large and small ligands. In a second retrospective test, the ACD was docked against a conformational ensemble of thymidylate synthase. Compared to docking against individual enzyme conformations, the flexible receptor docking approach improved enrichment of known ligands. Including a receptor conformational energy weighting term improved enrichment further. To test the method prospectively, the ACD database was docked against another cavity mutant of lysozyme (L99A/M102Q). A total of 18 new compounds predicted to bind this polar cavity and to change its conformation were tested experimentally; 14 were found to bind. The bound structures for seven ligands were determined by X-ray crystallography. The predicted geometries of these ligands all corresponded to the observed geometries to within 0.7A RMSD or better. Significant conformational changes of the cavity were observed in all seven complexes. In five structures, part of the observed accommodations were correctly predicted; in two structures, the receptor conformational changes were unanticipated and thus never sampled. These results suggest that although sampling receptor flexibility can lead to novel ligands that would have been missed when docking a rigid structure, it is also important to consider receptor conformational energy.  相似文献   

19.
Ebola viruses (EBOV) will induce acute hemorrhagic fever, which is fatal to humans and nonhuman primates. The combination of EBOV VP35 peptide with nucleoprotein N-terminal (NPNTD) is proposed based on static crystal structures in recent studies, but VP35 binding mechanism and conformational dynamics are still unclear. This investigation, using Molecular Dynamic (MD) simulation and Molecular Mechanics Generalized Born Surface Area (MM-GB/SA) energy calculation, more convincingly proves the greater roles of the protein binding mechanisms than do hints from the static crystal structure observations. Conformational analysis of the systems demonstrate that combination with VP35 may lead to the conformational transition of NPNTD from “open” to “closed” state. According to the analyses of binding free energies and their decomposition, VP35 residue R37 plays a crucial role in wild type as well as mutant systems. Mutations of I29 and L33 to aspartate as well as M34 to proline affect binding affinity mainly through influencing electrostatic interaction, which is closely related to H-bonds formation. In addition, mutations mainly affect β-hairpin and loop regions, among which, M34P may have the greatest influence to the binding. This study may provide specific binding mechanisms between VP35 peptide and NPNTD, especially some important residues concerning binding.  相似文献   

20.
Six, 2 ns molecular dynamics simulations have been performed on the homodimeric enzyme citrate synthase. In three, both monomers were started from the open, unliganded X-ray conformation. In the remaining three, both monomers started from a closed, liganded X-ray conformation, with the ligands removed. Projecting the motion from the simulations onto the experimental domain motion revealed that the free-energy profile is rather flat around the open conformation, with steep sides. The most closed conformations correspond to hinge-bending angles of 12-14 compared to the 20 degrees that occurs upon the binding of oxaloacetate. It is also found that the open, unliganded X-ray conformation is situated at the edge of the steep rise in free energy, although conformations that are about 5 degrees more open were sampled. A rigid-body essential dynamics analysis of the combined open trajectories has shown that domain motions in the direction of the closed X-ray conformation are compatible with the natural domain motion of the unliganded protein, which has just two main degrees of freedom. The simulations starting from the closed conformation suggest a free-energy profile with a small barrier in going from the closed to open conformation. A combined essential dynamics and hinge-bending analysis of a trajectory that spontaneously converts from the closed to open state shows an almost exact correspondence to the experimental transition that occurs upon ligand binding. The simulations support the conclusion from an earlier analysis of the experimental transition that the beta-hairpin acts as a mechanical hinge by attaching the small domain to the large domain through a conserved main-chain hydrogen bond and salt-bridges, and allowing rotation to occur via its two flexible termini. The results point to a mechanism of domain closure in citrate synthase that has analogy to the process of closing a door.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号