首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that the dominant white spotting (W) locus encodes the proto-oncogene c-kit, a member of the tyrosine kinase receptor family. One symptom of mice bearing mutation within this gene is sterility due to developmental failure of the primordial germ cells during early embryogenesis. To elucidate the role of the c-kit in gametogenesis, we used an anti-c-kit monoclonal antibody, ACK2, as an antagonistic blocker for c-kit function to interfere with the development of male and female germ cells during postnatal life. ACK2 enabled us to detect the expression of c-kit in the gonadal tissue and also to determine the functional status of c-kit, which is expressed on the surface of a particular cell lineage. Consistent with our immunohistochemical findings, the intravenous injection of ACK2 into adult mice caused a depletion in the differentiating type A spermatogonia from the testis during 24-36 h, while the undifferentiated type A spermatogonia were basically unaffected. Intraperitoneal injections of ACK2 into prepuberal mice could completely block the mitosis of mature (differentiating) type A spermatogonia, but not the mitosis of the gonocytes and primitive type A spermatogonia, or the meiosis of spermatocytes. Our results indicate that the survival and/or proliferation of the differentiating type A spermatogonia requires c-kit, but the primitive (undifferentiated) type A spermatogonia or spermatogenic stem cells are independent from c-kit. Moreover, the antibody administration had no significant effect on oocyte maturation despite its intense expression of c-kit.  相似文献   

2.
NANOS2 is an RNA-binding protein essential for fetal male germ cell development. While we have shown that the function of NANOS2 is vital for suppressing meiosis in embryonic XY germ cells, it is still unknown whether NANOS2 plays other roles in the sexual differentiation of male germ cells. In this study, we addressed the issue by generating Nanos2/Stra8 double knockout (dKO) mice, whereby meiosis was prohibited in the double-mutant male germ cells. We found that the expression of male-specific genes, which was decreased in the Nanos2 mutant, was hardly recovered in the dKO embryo, suggesting that NANOS2 plays a role in male gene expression other than suppression of meiosis. To investigate the molecular events that may be controlled by NANOS2, we conducted a series of microarray analyses to search putative targets of NANOS2 that fulfilled 2 criteria: (1) increased expression in the Nanos2 mutant and (2) the mRNA associated with NANOS2. Interestingly, the genes predominantly expressed in undifferentiated primordial germ cells (PGCs) were significantly selected, implying the involvement of NANOS2 in the termination of the characteristics of PGCs. Furthermore, we showed that NANOS2 is required for the maintenance of mitotic quiescence, but not for the initiation of the quiescence in fetal male germ cells. These results suggest that NANOS2 is not merely a suppressor of meiosis, but instead plays pivotal roles in the sexual differentiation of male germ cells.  相似文献   

3.
Sheep testes undergo a dramatic rate of development with structural changes during pre-sexual maturity, including the proliferation and maturation of somatic niche cells and the initiation of spermatogenesis. To explore this complex process, 12,843 testicular cells from three males at pre-sexual maturity (three-month-old) were sequenced using the 10× Genomics ChromiumTM single-cell RNA-seq (scRNA-seq) technology. Nine testicular somatic cell types (Sertoli cells, myoid cells, monocytes, macrophages, Leydig cells, dendritic cells, endothelial cells, smooth muscle cells, and leukocytes) and an unknown cell cluster were observed. In particular, five male germ cell types (including two types of undifferentiated spermatogonia (Apale and Adark), primary spermatocytes, secondary spermatocytes, and sperm cells) were identified. Interestingly, Apale and Adark were found to be two distinct states of undifferentiated spermatogonia. Further analysis identified specific marker genes, including UCHL1, DDX4, SOHLH1, KITLG, and PCNA, in the germ cells at different states of differentiation. The study revealed significant changes in germline stem cells at pre-sexual maturation, paving the way to explore the candidate factors and pathways for the regulation of germ and somatic cells, and to provide us with opportunities for the establishment of livestock stem cell breeding programs.  相似文献   

4.
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT–PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.  相似文献   

5.
We previously reported that mammalian FSH induced differentiation of secondary spermatogonia into primary spermatocytes in organ culture of newt testicular fragments, whereas in medium lacking FSH primary spermatocytes never appeared. Here, we investigated why spermatogonia fail to form primary spermatocytes in the absence of FSH. Spermatogonia maintained proliferative activity and viability at about half the level of those cultured in the presence of FSH, progressed into the seventh generation, but became moribund during the G2/M phase. Thus, the eighth generation of spermatogonia never appeared, suggesting that cell death is the chief reason why primary spermatocytes fail to form in the absence of FSH. The presence of Dmc1, a molecular marker for the spermatocyte stage, confirmed our microscopic observations that spermatogonia differentiated into primary spermatocytes in the presence of FSH. Thus, FSH is indispensable for the completion of the last spermatogonial mitosis, a prerequisite for the conversion of germ cells from mitosis to meiosis. Because prolactin induced apoptosis in spermatogonia during the seventh generation, we propose that a checkpoint exists for the initiation of meiosis in the seventh generation whereby spermatogonia enter meiosis when the concentration ratio of FSH to prolactin is high but fail to do so when the ratio is low.  相似文献   

6.
For the reason that adult Sertoli cell specific connexin 43 knockout (SCCx43KO) mice show arrested spermatogenesis at spermatogonial level or Sertoli cell only tubules and significantly reduced germ cell (GC) numbers, the aims of the present study were (1) to characterize the remaining GC population and (2) to elucidate possible mechanisms of their fading. Apoptosis was analyzed in both, KO and wild type (WT) male littermates during postnatal development and in adulthood using TUNEL. Although GC numbers were significantly reduced in KO at 2 and 8 days postpartum (dpp) when compared to WT, no differences were found concerning apoptotic incidence between genotypes. From 10 dpp, the substantial GC deficiency became more obvious. However, significantly higher apoptotic GC numbers were seen in WT during this period, possibly related to the first wave of spermatogenesis, a known phenomenon in normal pubertal testes associated with increased apoptosis. Characterization of residual spermatogonia in postnatal to adult KO and WT mice was performed by immunohistochemical reaction against VASA (marker of GCs in general), Lin28 and Fox01 (markers for undifferentiated spermatogonia) and Stra8 (marker for differentiating spermatogonia and early spermatocytes). During puberty, the GC component in SCCx43KO mice consisted likely of undifferentiated spermatogonia, few differentiating spermatogonia and very few early spermatocytes, which seemed to be rapidly cleared by apoptosis. In adult KOs, spermatogenesis was arrested at the level of undifferentiated spermatogonia. Overall, our data indicate that Cx43 gap junctions in SCs influence male GC development and differentiation rather than their survival.  相似文献   

7.
8.
Correct function of spermatogonia is critical for the maintenance of spermatogenesis throughout life, but the cellular pathways regulating undifferentiated spermatogonia proliferation, differentiation, and survival are only partially known. We show here that long glucocorticoid-induced leucine zipper (L-GILZ) is highly expressed in spermatogonia and primary spermatocytes and controls spermatogenesis. Gilz deficiency in knock-out (gilz KO) mice leads to a complete loss of germ cell lineage within first cycles of spermatogenesis, resulting in male sterility. Spermatogenesis failure is intrinsic to germ cells and is associated with increased proliferation and aberrant differentiation of undifferentiated spermatogonia and with hyperactivity of Ras signaling pathway as indicated by an increase of ERK and Akt phosphorylation. Spermatogonia differentiation does not proceed beyond the prophase of the first meiotic division due to massive apoptosis associated with accumulation of unrepaired chromosomal damage. These results identify L-GILZ as a novel important factor for undifferentiated spermatogonia function and spermatogenesis.  相似文献   

9.
《Reproductive biology》2020,20(4):520-524
The ubiquitin proteins play important role in proteasomal degradation and their balanced action is essential for the crucial process of spermatogenesis. The disruption of various ubiquitinating proteins in mice revealed defective spermatogenesis, thus inferring their important function in spermatogenesis. However, the role of some testis-specific ubiquitinating proteins still needs to be discovered. This study was planned to study the in vivo function of testis-specific and evolutionarily conserved ubiquitin shuttle gene, Ddi1 (DNA damage inducible 1). Ddi1 knockout mice were generated by CRISPR/Cas9 technology and we found that Ddi1 knockout mice were fertile without obvious alterations in reproductive parameters, such as sperm number and morphology. Histological examination of testicular tissues manifested compact seminiferous tubule structure along with all type of germ cells in the knockout mice. Moreover, cytological studies of spermatocytes did not exhibit any noteworthy difference in the progression of prophase I which endorse the fact that Ddi1 has not any vital function during meiosis. Overall, these findings suggested that Ddi1 is not critical for mouse fertility under normal laboratory conditions. The outcome of this study will help researchers to avoid overlap that will not only save their resources but also concentrate their focus on indispensable genes in spermatogenesis and fertility.  相似文献   

10.
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.  相似文献   

11.
Meiosis is a cell division process with complex chromosome events where various molecules must work in tandem. To find meiosis-related genes, we screened evolutionarily conserved and reproductive tract-enriched genes using the CRISPR/Cas9 system and identified potassium channel tetramerization domain containing 19 (Kctd19) as an essential factor for meiosis. In prophase I, Kctd19 deficiency did not affect synapsis or the DNA damage response, and chiasma structures were also observed in metaphase I spermatocytes of Kctd19 KO mice. However, spermatocytes underwent apoptotic elimination during the metaphase-anaphase transition. We were able to rescue the Kctd19 KO phenotype with an epitope-tagged Kctd19 transgene. By immunoprecipitation-mass spectrometry, we confirmed the association of KCTD19 with zinc finger protein 541 (ZFP541) and histone deacetylase 1 (HDAC1). Phenotyping of Zfp541 KO spermatocytes demonstrated XY chromosome asynapsis and recurrent DNA damage in the late pachytene stage, leading to apoptosis. In summary, our study reveals that KCTD19 associates with ZFP541 and HDAC1, and that both KCTD19 and ZFP541 are essential for meiosis in male mice.  相似文献   

12.
13.
In mammals, germ cells within the developing gonad follow a sexually dimorphic pathway. Germ cells in the murine ovary enter meiotic prophase during embryogenesis, whereas germ cells in the embryonic testis arrest in G0 of mitotic cell cycle and do not enter meiosis until after birth. In mice, retinoic acid (RA) signaling has been implicated in controlling entry into meiosis in germ cells, as meiosis in male embryonic germ cells is blocked by the activity of a RA-catabolizing enzyme, CYP26B1. However, the mechanisms regulating mitotic arrest in male germ cells are not well understood. Cyp26b1 expression in the testes begins in somatic cells at embryonic day (E) 11.5, prior to mitotic arrest, and persists throughout fetal development. Here, we show that Sertoli cell-specific loss of CYP26B1 activity between E15.5 and E16.5, several days after germ cell sex determination, causes male germ cells to exit from G0, re-enter the mitotic cell cycle and initiate meiotic prophase. These results suggest that male germ cells retain the developmental potential to differentiate in meiosis until at least at E15.5. CYP26B1 in Sertoli cells acts as a masculinizing factor to arrest male germ cells in the G0 phase of the cell cycle and prevents them from entering meiosis, and thus is essential for the maintenance of the undifferentiated state of male germ cells during embryonic development.  相似文献   

14.
Dead end is a vertebrate-specific RNA-binding protein implicated in germ cell development. We have previously shown that mouse Dead end1 (DND1) is expressed in male embryonic germ cells and directly interacts with NANOS2 to cooperatively promote sexual differentiation of fetal germ cells. In addition, we have also reported that NANOS2 is expressed in self-renewing spermatogonial stem cells and is required for the maintenance of the stem cell state. However, it remains to be determined whether DND1 works with NANOS2 in the spermatogonia. Here, we show that DND1 is expressed in a subpopulation of differentiating spermatogonia and undifferentiated spermatogonia, including NANOS2-positive spermatogonia. Conditional disruption of DND1 depleted both differentiating and undifferentiated spermatogonia; however, the numbers of Asingle and Apaired spermatogonia were preferentially decreased as compared with those of Aaligned spermatogonia. Finally, we found that postnatal DND1 associates with NANOS2 in vivo, independently of RNA, and interacts with some of NANOS2-target mRNAs. These data not only suggest that DND1 is a partner of NANOS2 in undifferentiated spermatogonia as well as in male embryonic germ cells, but also show that DND1 plays an essential role in the survival of differentiating spermatogonia.  相似文献   

15.
16.
《Reproductive biology》2023,23(1):100727
Spermatogenesis is a continual process that relies on the activities of undifferentiated spermatogonia, which contain spermatogonial stem cells (SSCs) that serve as the basis of spermatogenesis. The gene expression pattern and molecular control of fate decisions of undifferentiated spermatogonia are not well understood. Rho guanine nucleotide exchange factor 15 (ARHGEF15, also known as EPHEXIN5) is a guanine nucleotide-exchange factor (GEF) that activates the Rho protein. Here, we reported that ARHGEF15 was expressed in undifferentiated spermatogonia and spermatocytes in mouse testes; however, its deletion did not affect spermatogenesis. Arhgef15-/- mice were fertile, and histological examination of the seminiferous tubules of Arhgef15-/- mice revealed complete spermatogenesis with the presence of all types of spermatogenic cells. Proliferation and differentiation of the undifferentiated spermatogonia were not impacted; however, further analysis showed that Arhgef15 deletion resulted in decreased expression of Nanos2, Lin28a and Ddx4. Together, these findings suggest that ARHGEF15 was specifically enriched in undifferentiated spermatogonia and regulated gene expression but dispensable for spermatogenesis in mice.  相似文献   

17.
Lymphoid-specific helicase (HELLS; also known as LSH) is a member of the SNF2 family of chromatin remodeling proteins. Because Hells-null mice die at birth, a phenotype in male meiosis cannot be studied in these animals. Allografting of testis tissue from Hells(-/-) to wild-type mice was employed to study postnatal germ cell differentiation. Testes harvested at Day 18.5 of gestation from Hells(-/-), Hells(+/-), and Hells(+/+) mice were grafted ectopically to immunodeficient mice. Bromodeoxyuridine incorporation at 1 wk postgrafting revealed fewer dividing germ cells in grafts from Hells(-/-) than from Hells(+/+) mice. Whereas spermatogenesis proceeded through meiosis with round spermatids in grafts from Hells heterozygote and wild-type donor testes, spermatogenesis arrested at stage IV, and midpachytene spermatocytes were the most advanced germ cell type in grafts from Hells(-/-) mice at 4, 6, and 8 wk after grafting. Analysis of meiotic configurations at 22 days posttransplantation revealed an increase in Hells(-/-) spermatocytes with abnormal chromosome synapsis. These results indicate that in the absence of HELLS, proliferation of spermatogonia is reduced and germ cell differentiation arrested at the midpachytene stage, implicating an essential role for HELLS during male meiosis. This study highlights the utility of testis tissue grafting to study spermatogenesis in animal models that cannot reach sexual maturity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号