首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
CRISPR interference (CRISPRi) was applied to enable the aerobic production of pyruvate in Escherichia coli MG1655 under glucose excess conditions by targeting the promoter regions of aceE or pdhR. Knockdown strains were cultivated in aerobic shaking flasks and the influence of inducer concentration and different sgRNA binding sites on the production of pyruvate was measured. Targeting the promoter regions of aceE or pdhR triggered pyruvate production during the exponential phase and reduced expression of aceE. In lab‐scale bioreactor fermentations, an aceE silenced strain successfully produced pyruvate under fully aerobic conditions during the exponential phase, but loss of productivity occurred during a subsequent nitrogen‐limited phase. Targeting the promoter region of pdhR enabled pyruvate production during the growth phase of cultivations, and a continued low‐level accumulation during the nitrogen‐limited production phase. Combinatorial targeting of the promoter regions of both aceE and pdhR in E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 resulted in the stable aerobic production of pyruvate with non‐growing cells at YP/S  =  0.36 ± 0.029 gPyruvate/gGlucose in lab‐scale bioreactors throughout an extended nitrogen‐limited production phase.  相似文献   

2.
3.
ObjectiveDue to limited immunological profiles of high‐grade serous ovarian cancer (HGSOC), we aimed to characterize its molecular features to determine whether a specific subset that can respond to immunotherapy exists.Materials and MethodsA training cohort of 418 HGSOC samples from TCGA was analysed by consensus non‐negative matrix factorization. We correlated the expression patterns with the presence of immune cell infiltrates, immune regulatory molecules and other genomic or epigenetic features. Two independent cohorts containing 482 HGSOCs and in vitro experiments were used for validation.ResultsWe identified immune and non‐immune groups where the former was enriched in signatures that reflect immune cells, infiltration and PD‐1 signalling (all, P < 0.001), and presented with a lower chromosomal aberrations but increased neoantigens, tumour mutation burden, and microsatellite instability (all, P < 0.05); this group was further refined into two microenvironment‐based subtypes characterized by either immunoactivation or carcinoma‐associated fibroblasts (CAFs) and distinct prognosis. CAFs‐immune subtype was enriched for factors that mediate immunosuppression and promote tumour progression, including highly expressed stromal signature, TGF‐β signalling, epithelial‐mesenchymal transition and tumour‐associated M2‐polarized macrophages (all, P < 0.001). Robustness of these immune‐specific subtypes was verified in validation cohorts, and in vitro experiments indicated that activated‐immune subtype may benefit from anti‐PD1 antibody therapy (P < 0.05).ConclusionOur findings revealed two immune subtypes with different responses to immunotherapy and indicated that some HGSOCs may be susceptible to immunotherapies or combination therapies.  相似文献   

4.
The Gram‐negative bacterium Legionella pneumophila is the causative agent of Legionnaires'' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella‐containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non‐virulent and a non‐replicating, virulent/transmissive phase. Here, we show on a single‐cell level that at late stages of infection, individual motile (PflaA‐GFP‐positive) and virulent (PralF‐ and PsidC‐GFP‐positive) L. pneumophila emerge in the cluster of non‐growing bacteria within an LCV. Comparative proteomics of PflaA‐GFP‐positive and PflaA‐GFP‐negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA‐GFP‐positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi‐phasic life cycle of L. pneumophila.  相似文献   

5.
Metabolic reprogramming of non‐cancer cells residing in a tumor microenvironment, as a result of the adaptations to cancer‐derived metabolic and non‐metabolic factors, is an emerging aspect of cancer–host interaction. We show that in normal and cancer‐associated fibroblasts, breast cancer‐secreted extracellular vesicles suppress mTOR signaling upon amino acid stimulation to globally reduce mRNA translation. This is through delivery of cancer‐derived miR‐105 and miR‐204, which target RAGC, a component of Rag GTPases that regulate mTORC1 signaling. Following amino acid starvation and subsequent re‐feeding, 13C‐arginine labeling of de novo synthesized proteins shows selective translation of proteins that cluster to specific cellular functional pathways. The repertoire of these newly synthesized proteins is altered in fibroblasts treated with cancer‐derived extracellular vesicles, in addition to the overall suppressed protein synthesis. In human breast tumors, RAGC protein levels are inversely correlated with miR‐105 in the stroma. Our results suggest that through educating fibroblasts to reduce and re‐prioritize mRNA translation, cancer cells rewire the metabolic fluxes of amino acid pool and dynamically regulate stroma‐produced proteins during periodic nutrient fluctuations.  相似文献   

6.
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age‐associated cardiac dysfunction. Macroautophagy is the process by which post‐mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late‐in‐life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24‐month‐old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8‐month‐old (adult) mice (all < 0.05). To investigate the influence of late‐in‐life exercise training, additional cohorts of 21‐month‐old mice did (old‐ETR) or did not (old‐SED) complete a 3‐month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old‐ETR vs. old‐SED mice at 24 months (all < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all < 0.05) in hearts from old‐ETR vs. old‐SED mice. These data provide the first evidence that a physiological intervention initiated late‐in‐life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.  相似文献   

7.
8.
Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein''s charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester‐Staudinger pairs) can be used to mimic crowding by linking two non‐interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine‐acyl “protein charge ladders” and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Z monomer = −0.43 ± 0.01) and α‐lactalbumin (Z monomer = −4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = −0.04 ± 0.09 upon crowding by this pair (Z dimer = −5.10 ± 0.07). These small values of ΔZ are not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.  相似文献   

9.
Fracture non‐union represents a common complication, seen in 5%–10% of all acute fractures. Despite the enhancement in scientific understanding and treatment methods, rates of fracture non‐union remain largely unchanged over the years. This systematic review investigates the biological, molecular and genetic profiles of both (i) non‐union tissue and (ii) non–union‐related tissues, and the genetic predisposition to fracture non‐union. This is crucially important as it could facilitate earlier identification and targeted treatment of high‐risk patients, along with improving our understanding on pathophysiology of fracture non‐union. Since this is an update on our previous systematic review, we searched the literature indexed in PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and the Cochrane Library using Medical Subject Heading (MeSH) or Title/Abstract words (non‐union(s), non‐union(s), human, tissue, bone morphogenic protein(s) (BMPs) and MSCs) from August 2014 (date of our previous publication) to 2 October 2021 for non‐union tissue studies, whereas no date restrictions imposed on non–union‐related tissue studies. Inclusion criteria of this systematic review are human studies investigating the characteristics and properties of non‐union tissue and non–union‐related tissues, available in full‐text English language. Limitations of this systematic review are exclusion of animal studies, the heterogeneity in the definition of non‐union and timing of tissue harvest seen in the included studies, and the search term MSC which may result in the exclusion of studies using historical terms such as ‘osteoprogenitors’ and ‘skeletal stem cells’. A total of 24 studies (non‐union tissue: n = 10; non–union‐related tissues: n = 14) met the inclusion criteria. Soft tissue interposition, bony sclerosis of fracture ends and complete obliteration of medullary canal are commonest macroscopic appearances of non‐unions. Non‐union tissue colour and surrounding fluid are two important characteristics that could be used clinically to distinguish between septic and aseptic non‐unions. Atrophic non‐unions had a predominance of endochondral bone formation and lower cellular density, when compared against hypertrophic non‐unions. Vascular tissues were present in both atrophic and hypertrophic non‐unions, with no difference in vessel density between the two. Studies have found non‐union tissue to contain biologically active MSCs with potential for osteoblastic, chondrogenic and adipogenic differentiation. Proliferative capacity of non‐union tissue MSCs was comparable to that of bone marrow MSCs. Rates of cell senescence of non‐union tissue remain inconclusive and require further investigation. There was a lower BMP expression in non‐union site and absent in the extracellular matrix, with no difference observed between atrophic and hypertrophic non‐unions. The reduced BMP‐7 gene expression and elevated levels of its inhibitors (Chordin, Noggin and Gremlin) could potentially explain impaired bone healing observed in non‐union MSCs. Expression of Dkk‐1 in osteogenic medium was higher in non‐union MSCs. Numerous genetic polymorphisms associated with fracture non‐union have been identified, with some involving the BMP and MMP pathways. Further research is required on determining the sensitivity and specificity of molecular and genetic profiling of relevant tissues as a potential screening biomarker for fracture non‐unions.  相似文献   

10.
Oxidative stress alters cell viability, from microorganism irradiation sensitivity to human aging and neurodegeneration. Deleterious effects of protein carbonylation by reactive oxygen species (ROS) make understanding molecular properties determining ROS susceptibility essential. The radiation‐resistant bacterium Deinococcus radiodurans accumulates less carbonylation than sensitive organisms, making it a key model for deciphering properties governing oxidative stress resistance. We integrated shotgun redox proteomics, structural systems biology, and machine learning to resolve properties determining protein damage by γ‐irradiation in Escherichia coli and D. radiodurans at multiple scales. Local accessibility, charge, and lysine enrichment accurately predict ROS susceptibility. Lysine, methionine, and cysteine usage also contribute to ROS resistance of the D. radiodurans proteome. Our model predicts proteome maintenance machinery, and proteins protecting against ROS are more resistant in D. radiodurans. Our findings substantiate that protein‐intrinsic protection impacts oxidative stress resistance, identifying causal molecular properties.  相似文献   

11.
Obesity is a significant risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia with increased mortality and morbidity. High‐fat diet (HFD)‐induced obesity is associated with the activation of endoplasmic reticulum stress (ERS). However, the role of ERS in HFD‐induced AF remains elusive. Human atrium samples were examined for the ERS activation test. C57BL/6J mice were divided into four groups, including the control group, the HFD group, the 4‐phenylbutyric acid (4‐PBA) group, and the HFD + 4‐PBA group. At the age of 4 weeks, the HFD group and the HFD + 4‐PBA group were given HFD to construct the obesity model, while the other two groups were given a normal diet (ND). Transesophageal programmed electrical stimulation was conducted to evaluate the AF inducibility and duration. Atrial fibrosis and ERS activation were also investigated.We found that CHOP and GRP‐78 protein were significantly higher in overweight patients than the controls (both P < 0.05). AF inducibility and duration of the HFD group were significantly higher than the other groups (both P < 0.05), while there was no difference between those groups (P > 0.05). The mice of the HFD group had significantly higher collagen volume fraction (CVF%) than the other groups (P < 0.05). ERS marker protein of GRP78, p‐PERK, ATF6 and CHOP protein expression level was increased in the HFD group, which were significantly mitigated in the HFD + 4‐PBA group. In summary, HFD‐induced ERS activation facilitates atrial fibrosis and AF. The inhibition of ERS might alleviate atrial fibrosis and reduce the incidence of AF‐associated obesity.  相似文献   

12.
13.
During tumor growth—when nutrient and anabolic demands are high—autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras‐driven tumors additionally invoke non‐autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well‐characterized malignant tumor model in Drosophila melanogaster. Micro‐computed X‐ray tomography and metabolic profiling reveal that RasV12; scrib −/− tumors grow 10‐fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, ‐motility, ‐feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.  相似文献   

14.
Amyloid fibrils are ordered aggregates that may be formed from disordered, partially unfolded, and fragments of proteins and peptides. There are several diseases, which are due to the formation and deposition of insoluble β‐sheet protein aggregates in various tissue, collectively known as amyloidosis. Here, we have used bovine α‐lactalbumin as a model protein to understand the mechanism of amyloid fibril formation at pH 1.6 and 65°C under non‐reducing conditions. Amyloid fibril formation is confirmed by Thioflavin T fluorescence and atomic force microscopy (AFM). Our finding demonstrates that hydrolysis of peptide bonds occurs under these conditions, which results in nicking and fragmentation. The nicking and fragmentation have been confirmed on non‐reducing and reducing gel. We have identified the fragments by matrix‐assisted laser desorption ionization‐time of flight (MALDI‐TOF) mass spectrometry. The fragmentation may initiate nucleation as it coincides with AFM images. Conformational changes associated with monomer resulting in fibrillation are shown by circular dichroism and Raman spectroscopy. The current study highlights the importance of nicking and fragmentation in amyloid fibril formation, which may help understand the role of acidic pH and proteolysis under in vivo conditions in the initiation of amyloid fibril formation.  相似文献   

15.
Lacking systematic evaluations in soil quality and microbial community recovery after different amendments addition limits optimization of amendments combination in coal mine soils. We performed a short‐term incubation experiment with a varying temperature over 12 weeks to assess the effects of three amendments (biochar: C; nitrogen fertilizer at three levels: N‐N1~N3; microbial agent at two levels: M‐M1~M2) based on C/N ratio (regulated by biochar and N level: 35:1, 25:1, 12.5:1) on mine soil properties and microbial community in the Qilian Mountains, China. Over the incubation period, soil pH and MBC/MBN were significantly lower than unamended treatment in N addition and C + M + N treatments, respectively. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly in all amended treatments (p < .001). Higher AP, AK, MBC, MBN, and lower MBC/MBN were observed in N2‐treated soil (corresponding to C/N ratio of 25:1). Meanwhile, N2‐treated soil significantly increased species richness and diversity of soil bacterial community (p < .05). Principal coordinate analysis further showed that soil bacterial community compositions were significantly separated by N level. C‐M‐N treatments significantly increased the relative abundance (>1%) of the bacterial phyla Bacteroidetes and Firmicutes, and decreased the relative abundance of fungal phyla Chytridiomycota (p < .05). Redundancy analysis illustrated the importance of soil nutrients in explaining variability in bacterial community composition (74.73%) than fungal composition (35.0%). Our results indicated that N addition based on biochar and M can improve soil quality by neutralizing soil pH and increasing soil nutrient contents in short‐term, and the appropriate C/N ratio (25:1) can better promote microbial mass, richness, and diversity of soil bacterial community. Our study provided a new insight for achieving restoration of damaged habitats by changing microbial structure, diversity, and mass by regulating C/N ratio of amendments.  相似文献   

16.
Intramyocellular lipid (IMCL) utilization is impaired in older individuals, and IMCL accumulation is associated with insulin resistance. We hypothesized that increasing muscle total carnitine content in older men would increase fat oxidation and IMCL utilization during exercise, and improve insulin sensitivity. Fourteen healthy older men (69 ± 1 year, BMI 26.5 ± 0.8 kg/m2) performed 1 h of cycling at 50% VO2max and, on a separate occasion, underwent a 60 mU/m2/min euglycaemic hyperinsulinaemic clamp before and after 25 weeks of daily ingestion of a 220 ml insulinogenic beverage (44.4 g carbohydrate, 13.8 g protein) containing 4.5 g placebo (n = 7) or L‐carnitine L‐tartrate (n = 7). During supplementation, participants performed twice‐weekly cycling for 1 h at 50% VO2max. Placebo ingestion had no effect on muscle carnitine content or total fat oxidation during exercise at 50% VO2max. L‐carnitine supplementation resulted in a 20% increase in muscle total carnitine content (20.1 ± 1.2 to 23.9 ± 1.7 mmol/kg/dm; p < 0.01) and a 20% increase in total fat oxidation (181.1 ± 15.0 to 220.4 ± 19.6 J/kg lbm/min; p < 0.01), predominantly due to increased IMCL utilization. These changes were associated with increased expression of genes involved in fat metabolism (ACAT1, DGKD & PLIN2; p < 0.05). There was no change in resting insulin‐stimulated whole‐body or skeletal muscle glucose disposal after supplementation. This is the first study to demonstrate that a carnitine‐mediated increase in fat oxidation is achievable in older individuals. This warrants further investigation given reduced lipid turnover is associated with poor metabolic health in older adults.  相似文献   

17.
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein‐coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non‐conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non‐conifers. It is more obvious that in non‐conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6‐ to 3.1‐fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2‐ to 3.6‐fold of non‐conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein‐coding genes due to gene function, plant habitat, or newly acquired IRs.  相似文献   

18.
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient''s prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).  相似文献   

19.
BackgroundPappalysin 2 (PAPPA2) mutation, occurring most frequently in skin cutaneous melanoma (SKCM) and non‐small cell lung cancer (NSCLC), is found to be related to anti‐tumour immune response. However, the association between PAPPA2 and the efficacy of immune checkpoint inhibitors (ICIs) therapy remains unknown.MethodsTo analyse the performance of PAPPA2 mutation as an indicator stratifying beneficiaries of ICIs, seven public cohorts with whole‐exome sequencing (WES) data were divided into the NSCLC set (n = 165) and the SKCM set (n = 210). For further validation, 41 NSCLC patients receiving anti‐PD‐(L)1 treatment were enrolled in China cohort (n = 41). The mechanism was explored based on The Cancer Genome Atlas database (n = 1467).ResultsIn the NSCLC set, patients with PAPPA2 mutation (PAPPA2‐Mut) demonstrated a significantly superior progress free survival (PFS, hazard ratio [HR], 0.28 [95% CI, 0.14–0.53]; p < 0.001) and objective response rate (ORR, 77.8% vs. 23.2%; p < 0.001) compared to those with wide‐type PAPPA2 (PAPPA2‐WT), consistent in the SKCM set (overall survival, HR, 0.49 [95% CI: 0.31–0.78], p < 0.001; ORR, 34.1% vs. 16.9%, p = 0.039) and China cohort. Similar results were observed in multivariable models. Accordingly, PAPPA2 mutation exhibited superior performance in predicting ICIs efficacy compared with other published ICIs‐related gene mutations, such as EPHA family, MUC16, LRP1B and TTN, etc. In addition, combined utilization of PAPPA2 mutation and tumour mutational burden (TMB) could expand the identification of potential responders to ICIs therapy in both NSCLC set (HR, 0.36 [95% CI: 0.23–0.57], p < 0.001) and SKCM set (HR, 0.51 [95% CI: 0.34–0.76], p < 0.001). Moreover, PAPPA2 mutation was correlated with enhanced anti‐tumour immunity including higher activated CD4 memory T cells level, lower Treg cells level, and upregulated DNA damage repair pathways.ConclusionsOur findings indicated that PAPPA2 mutation could serve as a novel indicator to stratify beneficiaries from ICIs therapy in NSCLC and SKCM, warranting further prospective studies.

Flow diagram of the study. (A) Preliminary analysis. PAPPA2 mutated most frequently in skin cutaneous melanoma (SKCM) and non‐small cell lung cancer (NSCLC) in the The Cancer Genome Atlas (TCGA) database. PAPPA2 mutational rates in patients with objective response (CR + PR) versus without (SD + PD) were compared with other immune checkpoint inhibitors‐related gene mutations in the NSCLC and SKCM sets. (B) Biomarker development. Association between PAPPA2 mutation and clinical outcomes has been analysed in the NSCLC set, the SKCM set and China cohort. (C) Mechanism exploring. Based on the TCGA database, the correlation of PAPPA2 mutation with tumour mutation burden, infiltrating immune cells and DNA damage repair was explored for further immunogenicity and anti‐tumour activity mechanisms.  相似文献   

20.
Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade‐offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient‐rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome‐constrained genome‐scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose‐limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model‐based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient‐rich environments and thus form targets of fitness improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号