首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses of new oxamide derivatives of methyl 2-amino-2-deoxy-alpha-D-glucopyranoside and amino acid or peptide esters are presented. The reaction of methyl 3,4,6-tri-O-acetyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside and oxalyl chloride gave N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-alpha-D-glucopyranosid-2-yl) oxamic acid chloride which on reaction with the ester of Gly, L-Ala, L-Phe, GlyGly, Gly-L-Phe and Gly-L-Ala afforded N-(methyl 3,4,6-tri-O-acetyl-2-deoxy-alpha-D-glucopyranosid-2-yl), N'-oxalyl-amino acid or dipeptide esters. The structure of the oxamides was studied using 1H, 13C NMR in solution and solid state.  相似文献   

2.
Liu YH  Cao LH 《Carbohydrate research》2008,343(14):2376-2383
A novel one-step method of preparing polysubstituted guanidinoglucosides using peracetylated methyl 6-deoxy-6-thioureidoglucosides as starting materials and employing HgO in combination with molecular sieves as an efficient catalyst is reported. The structures of three methyl 2,3,4-tri-O-acetyl-6-[N(2)-(benzothiazol-2-yl)-N(3)-(oxydi-1,2-ethandiyl)]guanidino-6-deoxy-alpha-d-glucopyranosides were unambiguously confirmed by X-ray crystallography. The methodology affords new compounds in good yields and also provides a promising route for the synthesis of carbamate-protected guanidines.  相似文献   

3.
The syntheses have been developed for quaternary N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)ammonium salts derived from five aromatic amines, pyridine, 2-methylpyridine, 3-carbamoylpyridine, 4-(N,N-dimethylamino)pyridine, and quinoline, as well as two tertiary aliphatic amines, trimethylamine and triethylamine. Reactions of 1,4-anhydro-2,3-O-isopropylidene-5-O-tosyl-D,L-ribitol with tri-n-propylamine and tri-n-butylamine were unsuccessful. The products were identified on the basis of their 1H and 13C NMR spectra. The structure of N-(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol-5-yl)trimethylammonium tosylate was additionally elucidated by X-ray diffractometry.  相似文献   

4.
The synthesis of a new bis-(D-glucopyranosid-2-yl)oxamides via the key intermediate, N-acetyl N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl) oxamic acid chloride (2alpha) is described. Treatment of compound 2alpha with methyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy-beta-D-glucopyranoside afforded N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N'-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl)-oxamide. Reaction of 2alpha with 1,2-diaminoethane afforded 1,2-bis-[N,N'-(methyl 3',4',6'-tri-O-acetyl-alpha-D-glucopyranosid-2'-yl)]ethyloxamide as a main product, while 2-N-[N'-(methyl 3',4',6'-tri-O-acetyl-alpha-D-glucopyranosid-2'-yl)oxamide]-ethyl acetamide was formed as a side product. Reaction of 2alpha with 1,3-diamino-2-hydroxypropane gave only 1,3-bis-N,N-[N'-(methyl 3',4',6'-tri-O-acetyl-2'-deoxy-alpha-D-glucopyranosid-2'-yl)-oxamido]-2-propanol.  相似文献   

5.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

6.
The dithionite-mediated addition of BrCF(2)Cl to 3,4-di-O-pivaloyl-D-xylal (1) generated preferably 1-CF(2)Cl-substituted products, that is, (2-bromo-2-deoxy-3,4-di-O-pivaloyl-beta-D-xylopyranosyl)-chlorodifluoromethane and (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane. Selected chlorodifluoromethyl-substituted monosaccharide derivatives were hydrodechlorinated or alkylated at the CF(2)Cl-group using tin reagents under radical reaction conditions. Thus, hydrodechlorinations of (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane and of methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2,6-dideoxy-alpha/beta-L-glucopyranoside are reported using tri-n-butyltin hydride initiated by AIBN. UV-initiated allylations are reported for reactions of (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane, (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-glucopyranose, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-mannopyranose and methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha/beta-D-rabinopyranoside with allyltri-n-butyltin.  相似文献   

7.
4-Ethyl-2-oxo-2H-1-benzopyran-7-yl 2,3,4-tri-O-acetyl-5-thio-beta-D-xylopyranoside, a synthetic intermediate of the orally active antithrombotic compound Iliparcil, has been prepared in 44-47% isolated yield. Different conditions were used for the glycosylation of 4-ethyl-2H-7-hydroxy-1-benzopyran-2-one 6 applying 2,3,4-tri-O-acetyl-5-thio-D-xylopyranosyl bromide (2), the analogous beta-chloride 3 or the alpha-trichloroacetimidate 5 as donors. With halides 2 and 3, the reaction was carried out in the presence of ZnO-ZnCl2 or ZnO alone. Both promoters are cheap, safe and therefore compatible with large-scale industrial processes.  相似文献   

8.
The preparation of 2,3,4-tri-O-benzyl- (3), 2,3,4-tri-O-acetyl- (4), and 2,3,4-tri-O-benzoyl-N-(2,2-diethoxycarbonylvinyl)-6-O-trityl-beta- D-glucopyranosylamine (5) is described. The reaction of 3-5 with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl bromide yields 2,3,4-tri-O-benzyl- (9), 2,3,4-tri-O-acetyl- (10), and 2,3,4-tri-O-benzoyl-N-(2,2-diethoxycarbonylvinyl)-6-O-(2,3,4,6-tet ra-O- acetyl-beta-D-glucopyranosyl)-beta-D-glucopyranosylamine (11), respectively. 2,3,4-Tri-O-benzyl- (6), 2,3,4-tri-O-acetyl- (7), and 2,3,4-tri-O- benzoyl-N-(2,2-diethoxycarbonylvinyl)-beta-D-glucopyranosylamine (8) are also described.  相似文献   

9.
Xu L  Price NP 《Carbohydrate research》2004,339(6):1173-1178
Chirally deuterated (S)-D-(6-(2)H(1))glucose has been prepared in good overall yield from d-(6,6'-(2)H(2))glucose by a short, five-step synthesis from D-(6,6-(2)H(2))glucose utilizing (R)-(+)-Alpine-Borane [(R)-9-[(6,6-dimethylbicyclo[3.1.1]hept-2-yl)methyl]-9-borabicyclo[3.3.1]nonane]. Suitably protected methyl 2,3,4-tri-O-benzyl-D-(6,6-(2)H(2))glucopyranoside was prepared and the deuterated O-6 primary alcohol was oxidized to an aldehyde by Swern oxidation. Stereoselective reduction with nondeuterated (R)-(+)-Alpine-Borane gave methyl 2,3,4-tri-O-benzyl-(6S)-D-(6-(2)H(1))glucopyranoside, which was deprotected under standard conditions to afford the title compound. The key stereoselective reduction step was achieved in 90% yield. The preparation uses economical, commercially available starting materials and will be useful for elucidating biosynthetic mechanisms.  相似文献   

10.
X-Ray diffraction and high resolution 1H and 13C NMR spectral data for methyl 2,3,4,-tri-O-acetyl-alpha-D-glucopyranuronate and methyl (allyl 2,3,4-tri-O-acetyl- beta-D-glucopyranosid)uronate are presented. Both compounds adopt the 4C1 conformation.  相似文献   

11.
Allyl (methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyl uronate)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (4) and benzyl (methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyl uronate)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (5) have been efficiently synthesized by coupling allyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (2) or benzyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-D-glucopyranoside (3) with methyl (2,3,4-tri-O-acetyl-1-O-trichloroacetimidoyl)-alpha-D-glucopyranuronate (1), respectively, using trimethylsilyl triflate as promoter.  相似文献   

12.
The structure of the glucuronide of sulphadimethoxine formed in man   总被引:12,自引:12,他引:0       下载免费PDF全文
1. The major metabolite of 2,4-dimethoxy-6-sulphanilamidopyrimidine (sulphadimethoxine) in urine in man is a non-reducing glucuronide, which has been isolated and characterized as its S-benzylthiouronium salt. 2. The same compound was made synthetically by standard methods from sodium sulphadimethoxine and methyl 2,3,4-tri-O-acetyl-1-bromoglucuronate. 3. On hydrolysis with acid, the glucuronide yielded sulphanilic acid, glucuronic acid and barbituric acid, and with beta-glucuronidase it slowly yielded sulphadimethoxine and glucuronic acid. 4. Evidence based on infrared spectra and other data showed that the urinary and synthetic glucuronide was 1-deoxy-1-[N(1)'-(2',4'-dimethoxypyrimidin-6' -yl)sulphanilamido-beta-d-glucosid]uronic acid or sulphadimethoxine N(1)-glucuronide. 5. N(1)-Methyl- and N(ring)-methyl derivatives of sulphadimethoxine and 4-methoxy-6-sulphanilamidopyrimidine were prepared and their infrared and ultraviolet spectra determined for comparison.  相似文献   

13.
From the methanolysis product of the antibiotic YA–56 X (Zorbamycin) and Y belonging to phleomycin-bleomycin group, two monosaccharides and one disaccharide were isolated as their fully acetylated derivatives. The structures of these compounds were determined to be methyl 2,3,4-tri-O-acetyl-6-deoxy-β-L-gulopyranoside, methyl 2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranoside and methyl 2-O-(2,4,6-tri-O-acetyl-3-O-carbamoyl-α-D-mannopyranosyl)-3,4-O-0-acetyl-6-deoxy-β-L-“gulopyranoside,

Based on these results, it was concluded that 2-O-(3-O-carbamoyl-α-D-mannosyl)-6-deoxy-L-gulose is present as a sugar moiety of the antibiotic YA–56.  相似文献   

14.
Elhalabi J  Rice KG 《Carbohydrate research》2002,337(21-23):1935-1940
The synthesis of a novel analog of uridine diphosphate galactose (UDP-Gal) is described. A sulfur atom was inserted into the 6-position of galactose to give uridine 5'-(2,3,4-tri-O-acetyl-6-S-acetyl-6-thio-alpha-D-galactopyranosyl diphosphate). This peracetylated thiol analogue of UDP-Gal has been synthesized in nine steps starting from methyl alpha-D-galactopyranoside in an overall yield of 3%.  相似文献   

15.
W Wang  F Kong 《Carbohydrate research》1999,315(1-2):117-127
The peracetylated hexasaccharide 1,2,4-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6- O- (2,3,4-tri-O-acetyl-6-O-(2,4-di-O-acetyl-3,6-di-O-(2,3,4,6-tetra-O-acety l- beta-D-glucopyranosyl)-beta-D-glucopyranosyl)-beta-D-glucopyranosyl)-alp ha, beta-D-glucopyranose 21 was synthesized in a blockwise manner, employing trisaccharide trichloroacetimidate 2,4-di-O-acetyl-3,6-di-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)- alpha-D-glucopyranosyl trichloroacetimidate 17 as the glycosyl donor, and trisaccharide 4-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6-O-(2,3,4 -tri -O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S)ethylidene-alpha-D-glucopyra nose 18 as the acceptor. The donor 17 and acceptor 18 were readily prepared from trisaccharides 3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6-O-(2,3,4-tri-O-acet yl- 6-O-chloroacetyl-beta-D-glucopyranosyl)-1,2-O-(R,S)ethylidene-alpha-D- glucopyranose 10 and 3,6-di-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranose 11, respectively, which were obtained from rearrangement of orthoesters 3,4-di-O-acetyl-6-O-chloroacetyl-alpha-D-glucopyranose 1,2-(3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranosid-6-yl orthoacetate) 8 and 3,4,6-tri-O-acetyl-alpha-D-glucopyranose 1,2-(3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranosid-6-yl orthoacetate) 9, respectively. The orthoesters were prepared from selective coupling of the disaccharide 3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranose 4 with 'acetobromoglucose' (tetra-O-acetyl-alpha-D-glucopyranosyl bromide) and 6-O-chloroacetylated 'acetobromoglucose', respectively. To confirm the selectivity of the orthoester formation and rearrangement, the disaccharide 4-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S ) ethylidene-alpha-D-glucopyranose 7 was prepared from 4 by selective tritylation, acetylation and detritylation. The title compound, an elicitor-active D-glucohexaose 3-O-(beta-D-glucopyranosyl)-6-O-(6-O-(3,6-di-O-(beta-D-glucopyranosyl)-b eta -D-glucopyranosyl)-beta-D-glucopyranosyl)-alpha,beta-D-glucopyranose 1, was finally obtained by Zemplén deacetylation of 21 in quantitative yield.  相似文献   

16.

Arabinosylation of some 4-amino- and 4-arylideneamino-5-(pyridin-3-yl)-2,4-dihydro-[1,2,4]-triazole-3-thiones with 2,3,4-tri-O-acetyl-β-L-arabinopyranosyl bromide led to an efficient synthetic approach to the corresponding N-and S-α-L-arabinopyranosides. Structure assignment of these two regiosiomers was based on chemical and spectroscopic evidences. Antimicrobial activities of two selected regioisomeric N-and S-α-L-arabinopyranosides were compared. The N-α-L-arabinopyranoside showed higher inhibitory effect than its regioisomeric S-α-L-arabinopyranoside against Aspergillus fumigatus, Penicillium italicum, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

17.
Methyl 3,4,6-tri-O-benzyl-beta-D-mannopyranoside (2), methyl 2,3-O-isopropylidene-beta-D-mannopyranoside (11), and 4-nitrophenyl 2,3-O-isopropylidene-beta-D-mannopyranoside (12) were each condensed with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide (1) in the presence of mercuric cyanide, to give after deprotection, methyl 2-(5) and 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (15), and 4-nitrophenyl 6-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside (20), respectively. A similar condensation of 11 with 3,4,6-tri-O-acetyl-2-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha-D- mannopyranosyl bromide (21) and 2,3,4-tri-O-acetyl-6-O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)-a lpha D-mannopyranosyl bromide (25), followed by removal of protecting groups, afforded methyl O-alpha-D-mannopyranosyl-(1----2)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (24) and methyl O-alpha-D-mannopyranosyl-(1----6)-O-alpha-D-mannopyranosyl-(1----6)-beta -D- mannopyranoside (28), respectively. Bromide 25 was also condensed with 12 to give a trisaccharide derivative which was deprotected to furnish 4-nitrophenyl O-alpha-D-mannopyranosyl-(1----6)-alpha-D-mannopyranosyl-(1----6)-beta-D - mannopyranoside (31). Phosphorylation of methyl 3,4,6-tri-O-benzyl-2-O-alpha-D-mannopyranosyl-beta-D-mannopyranoside and 15 with diphenyl phosphorochloridate in pyridine gave the 6'-phosphates 6 and 16, respectively. Hydrogenolysis of the benzyl and phenyl groups provided methyl 2-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (7) and methyl 6-O-(disodium alpha-D-mannopyranosyl 6-phosphate)-beta-D-mannopyranoside (17) after treatment with Amberlite IR-120 (Na+) cation-exchange resin. The structures of compounds 5, 7, 15, 17, 20, 24, 28, and 31 were established by 13C-n.m.r. spectroscopy.  相似文献   

18.
The synthesis and isolation of 1,4-anhydro-5-deoxy-5-iodo-2,3-O-isopropylidene-D,L-ribitol and N-[(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol)-5-yl]trimethylammonium iodide are described. The products were examined by (1)H, (13)C NMR spectroscopy, and N-[(1,4-anhydro-5-deoxy-2,3-O-isopropylidene-D,L-ribitol)-5-yl]trimethylammonium iodide was additionally analyzed by X-ray crystallography.  相似文献   

19.
The X-ray diffraction analysis of N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N'-p-chlorophenyloxamide (1), N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N',N'-diethyloxamide (2), N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl), N'-methyl, N'-phenyloxamide (3), N-acetyl, N-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl), N'-ethyl, N'-phenyloxamide (4) was performed. It was found that the oxamide group in compounds 1-4 can be characterized as two structurally independent amides because there is no pi conjugation across the oxalyl OC-CO bond. Only the oxamide group of 1 is planar and adopts trans conformation stabilized as two intramolecular N-H...O hydrogen bonds.  相似文献   

20.
Electroreduction of the disulfide derivative RSSR (5, R= [bond]C(6)H(4)[bond]CO[bond]C(6)H(4)[bond]CN) on a mercury pool or a carbon gauze electrode in the presence of 2,3,4-tri-O-acetyl-5-thio-D-xylopyranosyl bromide (1), using a sacrificial zinc anode gave an alpha,beta anomeric mixture of [4-(4-cyanobenzoylphenyl)] 2,3,4-tri-O-acetyl-1,5-dithio-D-xylopyranoside (6) in 40-70% yield, according to the experimental conditions used (nature of solvent, electrolyte salt, and temperature). High selectivity favouring the alpha anomer of 6 is observed starting from the alpha anomer of 1. Mechanistic aspects are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号